Biomechanics research on martial arts – the importance of defensive study

Authors' Contribution:

- A Study Design
- B Data Collection
- C Statistical Analysis
- ${\bm D} \quad \text{Manuscript Preparation}$
- E Funds Collection

Ghazirah Mustapha^{1ABCDE}, Jamaluddin Mahmud^{1ABCDE}, Muzammer Zakaria^{2ABCD}, Wan Ruzaini Wan Sulaiman^{3ABCD}

- ¹ Faculty of Mechanical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia
- ² School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
- ³ Advanced Material Research Centre, SIRIM Bhd, Kulim Hi-Tech, Malaysia

Source of support: The study is funded by Persatuan Seni Silat Cekak Malaysia, Universiti Teknologi MARA and Ministry of Education (MOE) Malaysia, grant no. 600-RMI/FRGS5/3(76/2013).

Received: 12 November 2013; Accepted: 02 September 2014; Published online: 31 May 2015

ICID: 1155660

Abstract

Background & Study Aim: Martial art is a self-defence art. Nevertheless, most martial art biomechanics studies have concentrated more on the offensive rather than on the defensive aspect of it. An in-depth study of defensive techniques is equally important since the real application of self-defence requires an individual to defend first and counter-attack second. The disproportionate trend of current studies needs to be validated to support future research. The purpose of this paper are trend of research and publications pertaining to defensive techniques in martial arts biomechanics.

- **Material & Methods:** A systematic survey of research publications was conducted in the field of martial art biomechanics. Advanced search was opted to retrieve and filter scientific articles published in four databases which include SportDiscuss, ScienceDirect, Web of Science and ProQuest. An analysis was conducted on the aforementioned publications in order to categorize them based on the martial arts' classifications for offensive and defensive techniques.
 - **Results:** The results show that 89.1 percent of the publications in Martial Arts Biomechanics studies had focused on offensive techniques, compared to only 11 percent on defensive techniques.
 - **Conclusions:** Research in martial arts biomechanics is expanding, nevertheless it portrays a similar trend that tends to focus on offensive techniques. Supposedly, defensive techniques are of equal importance in martial arts. Therefore, more biomechanics investigations pertaining to defensive techniques in martial arts should be carried out. In addition, the data presented in this review could provide significant knowledge to support future research in martial arts biomechanics.
 - **Keywords:** bibliometrics defensive action offensive action scientific journals
 - Author's address: Ghazirah Mustapha, Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; e-mail: ghazirah039@ppinang.uitm.edu.my

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (http://creativecommons.org/licenses/by-nc/4.0), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

Fend off – is a technique that permits the practitioner to repel/avert an attack. This kind of technique is observed in an established Malay Martial Art known as *Seni Silat Cekak*.

Evade – avoid the strike and apply counter attack.

Grab – catch a strike using hands.

Makan gerak – intuitive counter manoeuvre, when the enemy attacks, attack faster than the enemy.

Block – avoid a strike by stopping it.

Martial arts – referring to any combat and self-defence practices that combine offensive and defensive techniques.

INTRODUCTION

Martial arts are among one of numerous cultural activities practiced by males and females to protect themselves from physical and emotional harm initiated by attackers [1,2]. By applying certain techniques, the practitioner would be able to express his internal strength so that he can use it to defend himself. In fact, martial arts practitioners can rely on such techniques to disable their opponents [3]. More importantly, the practitioner may be able to defeat bigger and stronger opponents if they can apply the proper technique upon their opponents [4].

Martial arts are not necessarily a medium for the practitioner to become remarkable. Demonstrations that display the prolonged version of martial arts' various techniques, in order to impress the audience, i.e. in documentaries on television, is not the best way to reveal the systematic beauty of such techniques. Each technique itself must be characterized as concise, easy and precise. The main intention for each practitioner is to settle the confrontation as quickly as possible. Martial art is classified as a highly dangerous sporting career as almost all martial arts practitioners have experienced some form of injuries during practice [5].

Technically, martial art is an affiliation of systematic techniques designed to effectively avoid an attack, to kill or disable the enemy [6,7]. Based on the history of humanity, people tend to be aggressive in order to have an advantage over others. Threats of piracy, colonialism and expansionism made some form of martial arts relevant at the time. As a result, martial arts lessons were available in almost every part of the world, producing thousands upon thousands of different martial arts practices [8]. Local cultures may have affected the different forms of martial arts which have resulted in the arts' various styles, techniques and ideologies. However, the diverse martial arts techniques have remained true to two fundamental elements; the art to evade an attack and the art to incapacitate the attacker, as indicated in Figure 1. Both elements complement each other, thus practitioners are required to master them both in order to rely on the martial arts as self-defence tools. The battle situation sometimes requires someone to apply an attack and vice versa.

One martial arts practitioner may differ from another in the arts of application and body coordination when applying any technique. However, due to networking through friendships, intermarriages and business affairs, similarities among certain types of martial arts are observed as well [7,8]. In fact, physical similarities may have limited the disparity of movements even though human limbs have multi-degreed flexibility. The best examples are the punch and the kick in martial arts. There are various names to represent them and yet, in the end, they still remain just different types of a punch or a kick.

An offensive technique is meant to result in injury, pain and inability to the opponent. The attacker would disable the opponent by aiming at his soft vital areas such as the eyes, throats, ears and joints [7]. The attacks are normally in the form of punches, kicks, smashes and smacks. Thus, this review has divided the offensive techniques into two sections according to the body segments involved in the execution which is the upper limb and the lower limb.

On the other hand, the defensive aspects in martial arts deal with the effort on placing the defender in a safe situation when there is an unwanted incoming force attempting to hurt them. Thus, what is to be observed is the line of action of the incoming force [9]. The defender must be aware of the line of attack and the options available to overcome the situation which is: I) replace the target (in this case, the defender's body) or II) deflect and neutralize the attacker's movement .

The defensive methods in most martial arts have been classified into five types of movements; grab, evade, block, fend off and *makan gerak*. These classifications were made based on personal observations and experiences in martial arts. The defensive moves in this article refer to the preliminary move taken as a response towards the striking force. All these techniques are widely used and are considered as the initial steps which are included in the whole technique.

Grab is a technique with which the defender catches the attacker's limb that is being used to apply the force. The defender would normally utilize the momentum of the attacker to complete the defensive formation. Even though more than one style of martial art uses the grab technique, it is more commonly observed among Judo practitioners when they apply the throw technique.

Evade is a defensive action against an offensive move by an attacker. The defender steps his feet inside or outside the line of attack in order to remove himself from the target point. Evade is normally combined with either a grab, a block or a fend off technique to complete the defensive move. Blocking and fending off an attack represent the acts of avoiding the striking forces. Blocking in martial arts represents the act of avoiding the strike by stopping the opponent's

Figure 1. General Martial Arts Composition

attack while fending it off by deflecting the attacking force(s).

Fending off relies on a minimum repelling force executed by the defender to deflect the incoming force. The defender would utilize the flexibility of the hand and arm movements to fend off an attack. A systematic fending off technique is observed in the indigenous traditional Malay Martial Art called *Seni Silat Cekak Malaysia*. All the *buah* (lockdown or takedown techniques) in this Malay Martial Style is rooted from four fending off techniques known as *Kaedah A*, *Kaedah B*, *Kaedah C* dan *Kaedah D* [10].

The final classification for defensive techniques is *makan* gerak. Unfortunately, there is no appropriate English term that may represent the Malay term for *makan gerak*. The term *Makan gerak* refers to a situation where the defender can predict the attacker's next moves and acts faster than the attacker. Normally, an experienced practitioner would be able to apply this kind of technique.

The complexity and variety of martial arts techniques have further increased curiosity among researchers. Therefore, various researches have been conducted to scientifically study the mechanical aspects behind martial arts. Among the huge numbers of scientific areas, biomechanics is observed as having the closest resemblance to human movements in martial arts.

Biomechanics was chosen because it is an area of study that involves the application of mechanical principles towards the anatomical and the physiological aspects of living systems [11]. It is also based on the availability of proper biomechanical methods that could measure the efficiency of martial arts. Furthermore, biomechanics studies have wide applications that are reliable in sports performance enhancement (tennis, soccer, cricket bowling, baseball) [12–15]. Previous literature have proven that biomechanical studies are reliable and capable of exhibiting the quality of any martial arts [16,17]. Biomechanics was of great assistance in this study by focusing on how to enhance a practitioner's performance and to reduce injury while applying various techniques [18]. However, most biomechanics characterizations have focused more on offensive classifications and techniques. As a result, publications and references regarding defensive aspects of martial arts are very limited.

Therefore, the following pages offer information regarding biomechanics researches in Martial Arts. Considering the importance of making Martial Arts Biomechanics (MAB) researches more comprehensive, this review offers updated information regarding the current scenario of MAB researches. It aims to exhibit the status of scientific investigations towards defensive techniques in martial arts as well. This information is expected to be used in identifying any research gap for future study.

MATERIALS AND METHOD

This study adopts the systematic survey on research publication as a methodological approach to review the existing literature regarding Martial Arts Biomechanics to identify knowledge gaps pertaining defensive techniques in Martial Arts Biomechanics for future research agenda.

Literature searching strategy

In this study, keywords "Martial Arts" and "biomechanics" were used to retrieve scientific publications from four databases (SportDiscuss, ScienceDirect, Web of Science and Proquest) which were accessed via Universiti Teknologi MARA library's online databases. The Boolean operators 'and' between the keywords was used to ensure that both terms were included in each article. The search was refined to academic journals or scholar journals in each database, with the exception of the following: letters, editorials and book reviews. The selected scientific publications were then exported in Mandeley Reference Manager to handle the duplication issue.

Literature selection

Some of the selected papers which do not match the aims of study but adhere to the search keywords are likely contained. Therefore, it is essential to make further efforts to screen and filter the selected articles. The screening and filtering was conducted by considering the inclusion criteria (articles on biomechanics investigations towards Martial Arts Technique) and yet the review papers were excluded.

Classification Scheme & Trend analysis

The filtered scientific publications were classified into two major categories, offensive technique or defensive technique based on the general martial arts composition (Figure 1). After the aforementioned scientific publications were classified the trend analysis was performed: (1) to identify the status of biomechanics investigations pertaining to defensive techniques in martial arts and (2) to see the development of Martial Arts Biomechanics since year 1989.

RESULTS

Based on preliminary search, it is found that 338 scientific articles have been published and retrieved using keywords 'Martial Arts' AND 'Biomechanics'. Upon filtering, only 54 articles have fulfilled the inclusion criteria involving investigation about specific offensive/defensive techniques (Table 1).

Table 1. Numbers of articles published using keywords

 'Martial Arts' AND 'Biomechanics'

Database	Retrieved articles in preliminary search (number of papers)	Selected articles (number of papers)
Web of Science	25	13
ScienceDirect	231	16
Sport Discuss	47	21
ProQuest	35	4

Duplicates were inevitable among these papers, owing to adoption of overlapping databases [19]. Seven articles were found duplication analysed databases. A Venn diagram is plotted to depict and help identify the duplication (Figure 2).

Author	Methods /Apparatus	Measured Effects	Technique
Wąsik 2010 [20]	Complex Movement Analysis system (Smart-D)	Speed	Roundhouse Kick (Dolio Chagui)
Falco et al. 2009 [21]	Force Platform	Distance, execution time & impact force	Roundhouse Kick (Dolio Chagui)
Machado et al. 2010 [22]	Electromyography, Isokinetic Dynamometer	Muscular enhancement, power & torque capacity	Kick
Estevan et al. 2011 [23]	Force Platform, A/D Micro Controller, Pressure Sensors, Statistical Analysis	Time (reaction, execution & total response), max impact force	Roundhouse Kick (Dolio Chagui)
Pozo J et al. 2011 [24]	Force Plate, High Speed Camera	Impact force	Mae-geri
Koh et al. 2002 [25]	Videotape Analysis	Frequency of multiple impact, frequency & reaction to head blow	Axe Kick and Roundhouse kick (Naeryeo Chagui and Dolio Chagui)
Estevan et al. 2012 [26]	Force platform, LEDs, analogue- to-digital (A/D) microcontroller	Kicking height	Roundhouse Kick (Dolio Chagui)
Estevan et al. 2013 [27]	3D force plates, motion capture system	Execution time, velocity of thigh & shank	Roundhouse Kick (Dolio Chagui)
Fife et al. 2013 [28]	Tri-axial accelerometer, Qualysis Track Manager	Foot Velocity	Taekwondo Kicks (Chagui-Dolio Chagui, Twi-myo Dwi Chagui, Dwi Hureo Chagui)
Falcó et al. 2011 [29]		Impact force, execution time	Roundhouse Kick (Dolio Chagui)
Zvonar et al. 2012 [30]	Image Processing (film analysis)	Velocity, acceleration	Front Kick (Mae-geri)
Fife et al. 2013 [31]	A Hybrid II Crash Dummy head (H2D), tri-axial accelerometer.	Head linear acceleration (RLA), head injury criterion (HIC) data	Taekwondo Kicks (Chagui -Dolio Chagui, An Chagui, TwioTuit Chagui, Twio Tuit Dollyo Chagui)
Estevan et al. 2013 [32]	Force platform, LEDs, analogue- to-digital (A/D) microcontroller	Impact force, reaction time, execution time	Roundhouse kick (Dolio Chagui)
Zong-xiang et al. 2008 [33]	High-speed testing method	Kinematic data of body links	Horizontal Taekwondo Kick (Kaunde Chagui)
Quinzi et al. 2013 [34]	Surface electromyography (sEMG)	EMG data	Roundhouse kick (Dolio Chagui)
Nien et al. 2006 [35]	Motion Analysis System	Kinematic data, peak joint velocity	Taekwondo Kick <i>(Chagui)</i>
Quinzi et al. 2013 [36]	Stereophotogrammetric system	Coordinative patterns	Karate kick <i>(Geri)</i>
Serina et al. 1991 [37]	High-speed Video	Velocity, energy	Four types of kicks (Chagui)
Thibordee et al. 2014 [38]	Electrogoniometer sensors, Surface EMG	Kinematic, kinetic, EMG data	Roundhouse kick (Dolio Chagui)
Wu et al. 2007 [39]	3D Motion Analysis System, Bio- Pac System	Velocity	Whip kick (Bian Tui)
Kim et al. 2010 [40]	Three-dimensional video motion analysis	Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank	Roundhouse kick (Dolio Chagui)

Table 7 Solo d Dublic n Martial Ar tc Offo ncivo Tochnio · // . r Limb) .+i/

Finally the number of the compiled MAB scientific articles publications was reduced to 44 (defined as selected articles), where 39 articles focused on offensive techniques and the rest (5 articles) on defensive techniques. Out of 39 articles related to offensive techniques, 21 articles studied about the lower limb (Table 2), 16 articles studied about upper limb (Table 3) and the remaining 2 articles studied about both upper and lower limb (Table 4). For defensive techniques, all 5 articles studied about upper limb, where only pushing technique (*Tui Shou*) has been published (Table 5). This is interesting because as described earlier, defensive techniques cover jabbing, evading, blocking, fending off and grabbing, where much more studies should have been conducted.

Further analysis on time trends of publications each year reveals that the Martial Arts Biomechanics is currently attracting more attention from the scientific community. The results (Figure 3) show that the numbers of publications in the four databases: SportDiscuss, ScienceDirect, Web of Science and ProQuest increase significantly and consistently for the past four years compared to the previous year.

Numerical differences between MAB publications on offensive versus defensive techniques are found to be 89:11 (Figure 4). Based on this figure, it is obvious that publications on offensive techniques far surpass the defensive by 78.2%.

DISCUSSION

The study found that research related to MAB has not been vigorously explored. This is because there is still a lot more to discover, especially comprehensive studies related to defensive techniques. The results obviously exposed that the current research patterns (offensive versus defensive) in MAB is significantly imbalanced. Hence, it is worth to discuss the possibility of contributing to the obvious disparity (offensive biased).

MAB research is commonly conducted for sporting

Table 3. Selecter	d Publications or	n Martial Arts	Offensive	Techniques	(Upper	Limb)
-------------------	-------------------	----------------	-----------	------------	--------	-------

Author	Methods /Apparatus	Measured Effects	Technique
Neto et al. 2006 [41]	High-speed Cameras	Velocity, acceleration	Kung fu strike
lmamura et al. 2006 [42]	Video Cameras, Motion Analysis software	Momentum, resultant impulse	Hip throw, hand throw, leg throw (Koshi-Waza, Te-Waza, Ashi-Waza)
Neto et al. 2007 [43]	High-speed Video Analysis	Hand speed	Palm strike
Neto et al. 2007 [44]	Electromyography	EMG data	Palm strike
Neto et al. 2007 [45]	High-speed Video	Mass, Hand Speed	Palm strike
Mcgill et al. 2010 [46]	Electromyography	EMG data	Strike
Piorkowski et al. 2011 [47]	Motion Analysis System	Impact force, contact speed	Punch
Koshida et al. 2011 [48]	Motion Analysis System Force Platform	Kinetic & kinematic data	Kendo strike
Ferreira et al. 2012 [49]	Electromyography	EMG Data	Punch
Neto et al. 2012 [50]	High-speed Cameras	Mean impact force	Palm strikes
Zaggelidis et al. 2012 [51]	Force Plate	Ground force reaction	Throwing technique (Nage-Waza)
Wąsik et al. 2013 [52]	Complex Movement analysis system (Smart-D)	Speed, acceleration	Straight Punch (Ap Jirugi)
Flanagan 2000 [53]		Force of punch	Twisting punch, Vertical punch
Cesari et al. [54]	Photocells, Force Platform	Limb velocity, CoP displacement, punch impulse	Karate punch (Tsuke-Waza)
VencesBrito et al. 2011 [55]	Electromagnetic sensors, EMG signals, System Ascension Technology, Software, Motion Monitor	Kinematic, EMG Data	Straight punch (ChokuZuki)
lmamura et al. 2007 [56]	Three-dimensional Motion Analysis System	Velocity for Center of Mass	Sweeping Hip throw (Harai Goshi)

Author	Methods /Apparatus	Measured Effects	Technique
Kuragano et al. 2012 [57]	Electromyography	EMG Data, Punch Force & Electrical Potential (Muscle)	Punch & Kick (Tzuki & Geri Waza)
Fife et al. 2013 [58]	Hybrid II Crash Dummy, tri-axial accelerometer	Linear Head acceleration, Head Injury Criterion, peak head velocity, fist & foot velocity	Boxing punch (Knock Punch, Jaw Punch, Uppercut,Forehead) & Taekwondo kick (Dolio Chagui, Chiko Chagui, Naeryeo Chagui, Dwi Huryeo Chagui, Dwi Chagui)

Table 4. Selected Publications on Martial Arts Offensive Techniques (Combination of Upper & Lower Limbs)

Table 5. Selected Publications on Martial Arts Defensive Techniques

Author	Methods /Apparatus	Measured Effects	Technique
Chen et al. 2010 [59]	Motion Analysis Systems, Force Plate, Electromyography	EMG data, Center Of Mass Displacement, Muscle Activities	Pushing Technique <i>(Tui Shou)</i>
Chang et al. 2010 [60]	Kistler Force Plate, VICON motion capture system, Visual 3D, Matlab	Ground Force reaction, COM displacement	Pushing Technique <i>(Tui Shou)</i>
Huang et al. 2006 [61]	Motion Analysis Systems	COP trajectories	Pushing Technique <i>(Tui Shou)</i>
Liu et al. 1989 [62]			Pushing Technique <i>(Tui Shou)</i>
Wong et al. 2007 [63]	Video Camera, Motion Analysis software (Peak Motus)	Resistance force	Pushing Technique (Tui Shou)

Figure 3. Year Profile of publications (till 2013)

purposes. This could the main possibility as in sports, the striking formation is biomechanically characterised to provide information and improve offensive techniques. For example, the output from an MAB study is expected to assist athletes in strategizing offensive tactics in martial art competitions. perception of 'the person who can perform the most powerful attack will dominate in a battle'. This perception has encouraged researchers to focus on powerful offensive strikes rather than defensive technique.

The third possibility could be related to the degree of difficulty in conducting research related to offensive or defensive technique. However, experimental setup

Figure 4. Comparison between offensive and defensive publications

for offensive techniques could be made simpler by striking an imaginary target. On the contrary, defensive techniques require a real attacker and quasi fighting environment. (imaginary strike is not realistic).

CONCLUSIONS

The results show that the main objective of this study has been achieved successfully. Research in Martial Arts Biomechanics is expanding; nevertheless it portrays a similar trend that tends to focus on offensive techniques (89.1% biased). Literatures reviewed the data presented in this review could provide significant knowledge to support future research in Martial Arts Biomechanics. Therefore, it could be concluded that the current study has provided significant knowledge to support future research in Martial Arts Biomechanics. Supposedly, defensive techniques are of equal importance in martial arts. Therefore, more biomechanics investigations pertaining to defensive techniques in martial arts should be carried out.

COMPETING INTEREST

The authors declare that they have no competing interests.

REFERENCES

- Angleman A, Shinzato Y, Van Hasselt VB et al. Traditional martial arts versus modern self-defense training for women: Some comments. Aggress Violent Behav 2009; 14(2): 89–93
- Fernandes F, Wichi R, Silva V. Biomechanical methods applied in martial arts studies. J Morphol Sci 2011; 28: 141-144
- Pearson J. Kinematics and kinetics of Taekwon-do turning kick. [dissertation]. Dunedin: University Of Ottago; 1997: 84
- Walker J. No Physics Forces in Aikido : Making The Weak Equal To the Strong. (accessed 2013 May 1)]. Available from: URL:http://www.fightingarts.com/ reading/article.php?id=284

- Cynarski WJ, Kudlacz M. Injuries in martial arts and combat sports - a comparative study. Arch Budo 2008; 4: 91–97
- 6. Uchida T. The Paradox of Budo. J Arts Humanit 2001; 48(1)
- De Marco M. Practical Fighting Strategies of Indonesian Kuntao-Silat in the Willem Reeders Tradition. J Asian Martial Arts 2010; 19(3)
- De Marco M. The importance of Martial Arts Research and Practice. J Asian Martial Arts 2010; 9(2): 9–17
- Goodman F, Popovic A, Brady P. The Practical Stepby-step Guide To Martial arts: T'ai Chi & Aikido. London: Hermes House; 2010: 512
- 10. Mustapha G, Zakaria M, Wan Sulaiman WR et al. The Mechanical Aspects of Martial Arts : Total Time of Execution and Kinematics of Kaedah A. Proceedings of the International Colloquium on Sports Science, Exercise, Engineering and Technology 2014 (ICoSSEET 2014), Adnan R, Ismail S. I, Sulaiman N, Eds. Singapore: Springer, 2014: 647
- 11. Herman I. Physics of the Human Body. New York: Springer; 2007
- Khorasani M, Osman N, Yusof A. Biomechanical responds of instep kick between different positions in professional soccer players. J Hum Kinet 2009; 22: 21–28

- De Subijana C, Navarro E. Kinetic energy transfer during tennis serve. Biol Sport 2010; 4(2): 114–128
- 14. Ferdinands R. Analysis of segmental kinetic energy in cricket bowling. Procedia Engineering. 2011; 13: 246-251
- Fortenbaugh DM. The biomechanics of the baseball swing [dissertation]. Coral Gables: University of Miami; 2011: 235
- 16. Wąsik J. Physical parameters of the rising kick in taekwon-do. Arch Budo 2006; 2: 28–30
- Yu D, Yu Y, Wilde B. Biomechanical characteristics of the Axe Kick in Tae Kwon-Do. Arch Budo 2012; 8(4): 213–218
- Chuang LR, Ho WH, Liu Y et al. Biomechanical Analysis of Punching Different targets in Chinese Martial Arts. Paper presented at: International Society of Biomechanics 20th Congress; 2005 July 31-Aug 5, Cleveland, Ohio
- Zhou Z, Goh YM, Li Q. Overview and analysis of safety management studies in the construction industry. Saf Sci 2014; 72(2015): 337–350
- Wąsik J. The structure of the roundhouse kick on the example of a European Champion of taekwon-do. Arch Budo 2010; 6(4): 211–216
- Falco C, Alvarez O, Castillo I et al. Influence of the distance in a roundhouse kick's execution time and impact force in Taekwondo. J Biomech 2009; 42(3): 242–248
- Machado SM, Osório RA, Silva NS et al. Biomechanical analysis of the muscular power of martial arts athletes. Med Biol Eng Comput 2010; 48(6): 573–577
- 23. Estevan I, Alvarez O, Falco C et al. Impact force and time analysis influenced by execution distance in a roundhouse kick to the head in taekwondo. J Strength Cond Res 2011; 25(10): 2851–2856
- 24. Pozo J, Bastien G, Dierick F. Execution time, kinetics, and kinematics of the mae-geri kick: Comparison of national and international standard karate athletes. J Sports Sci 2011; 29(14): 1553–1561
- Koh JO, Watkinson EJ. Video analysis of blows to the head and face at the 1999 World Taekwondo championships. J Sports Med Phys Fitness 2002; 42(3): 348-353
- 26. Estevan I, Falco C, Alvarez O et al. Effect of Olympic Weight Category on Performance in the Roundhouse Kick to the Head in Taekwondo. J Hum Kinet 2012; 31: 37–43
- Estevan I, Jandacka D, Falco C. Effect of stance position on kick performance in taekwondo. J Sports Sci 2013; 31(16): 1815-1822
- 28. Fife GP, O'Sullivan DM, Pieter W et al. Effects of Olympic-style taekwondo kicks on an instrumented head-form and resultant injury measures. Br J Sports Med 2013; 47: 1161-1165
- 29. Falcó C, Estevan I, Alvarez O et al. Capacidad De Generación De Fuerzas De Golpeo Y Tiempo De Ejecución Según La Categoría De Peso En Tackwondo. Rev Ciencias del Deporte 2011; 7(Suppl.): 23-29
- Zvonar M, Kolarova K, Zahradnicek V et.al. Ido Movement for Culture. Journal of Martial Arts Anthropology 2012; 12(4): 12–19

- Fife GP, O'Sullivan D, Pieter W et.al. Effects of taekwondo kicks on head accelerations and injury potential: A pilot study. Int. Sport Med J 2013; 14(2): 53–66
- 32. Estevan I, Falco C. Mechanical analysis of the roundhouse kick according to height and distance in taekwondo. Biol Sport 2013; 30(4): 275–279
- 33. Zong-xiang H, Xue-zhen L. The Biomechanics Analysis on Trunk Sport at Horizontal-Kicking of Taekwondo. J Beijing Sport Uni 2008; 31(1): 64-66
- 34. Quinzi F, Camomilla V, Felici F et.al. Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels. J Electromyogr Kinesiol 2013; 23(1): 140-150
- 35. Nien YH, Chang JS, Tang WT. The comparison of kinematics characteristics between single and successive kicking techniques for the tackwondo player with an olympic medal: a case study. J Biomech 2006; 33(Suppl.1): S563
- Quinzi F, Sbriccoli P, Alderson J et al. Intra-limb coordination in karate kicking: Effect of impacting or not impacting a target. Hum Mov Sci 2014; 33: 108-119
- Serina ER, Lieu DK. Thoracic injury potential of basic competition tackwondo kicks. J Biomech 1991; 24(10): 951–960
- Thibordee S, Prasartwuth O. Effectiveness of roundhouse kick in elite Taekwondo athletes. J Electromyogr Kinesiol 2014; 24(3): 353–358
- 39. Wu CH, Chuang LR, Hong CT et al. The Biomechanical Analysis of Whip-Kick in Shanshou. J Biomech 2007; 40(Suppl.2): S375
- 40. Kim JW, Kwon MS, Yenuga SS et al. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks. Sports Biomech 2010; 9(2): 98–114
- 41. Neto OP, Magini M, Saba MMF. Análise cinemática de um movimento de Kung-Fu: a importância de uma apropriada interpretação física para dados obtidos através de câmeras rápidas. Rev Bras Ensino Física 2006; 28(2): 235–239
- Imamura R, Hreljac A, Escamilla RF et al. A threedimensional analysis of the center of mass for three different judo throwing techniques. J Sports Sci Med 2006; 5(CSSI): 122–131
- Neto OP, Magini M. Kinematical Characteristics Of Kung Fu Yau-Man Palm Strike. J Biomech 2007; 40: S457
- Neto OP, Magini M, Pacheco MT. Electromyographic study of a sequence of Yau-Man Kung Fu Palm Strikes with and without impact. J Sports Sci Med 2007; 6(CSSI-2): 23–27
- 45. Neto OP, Magini M, Saba MM. The role of effective mass and hand speed in the performance of kung fu athletes compared with nonpractitioners. J Appl Biomech 2007; 23(2): 139–148
- 46. Mcgill SM, Chaimberg JD, Frost DM et al. Evidence of a double peak in muscle activation to enhance strike speed and force: an example with elite mixed martial arts fighters. J Strength Cond Res 2010; 24(2): 348-357

- 47. Piorkowski BA, Lees A, Barton GJ. Single maximal versus combination punch kinematics. Sports Biomech 2011; 10(1): 1–11
- Koshida S, Matsuda T, Kawada K. Lower extremity biomechanics during kendo strike-thrust motion in healthy kendo athletes. J Sports Med Phys Fitness 2011; 51(3): 357–365
- 49. Ferreira MA, Vencesbrito AM. Sex differences in electromechanical delay during a punch movement. Percept Mot Skills 2012; 115(1): 228–240
- Neto OP, Silva JH, Marzullo AC et al. The effect of hand dominance on martial arts strikes. Hum Mov Sci 2012; 31(4): 824–833
- 51. Zaggelidis G, Lazaridis S. Evaluation of vertical ground reaction forces in three different judo hip throwing techniques in novice and advanced Greek athletes. Med Dello Sport 2012; 65(1): 29–36
- 52. Wąsik J, da Silva Santos JF, Franchini E. Movement structure and kinetics of the traditional straight punch: measurements in taekwon-do athletes. Ido Movement for Culture. Journal of Martial Arts Anthropology 2013; 13(1): 42–47
- 53. Flanagan S. Use of the wrist in the vertical punch & the twisting straight punch: A biomechanical comparison. J Asian Martial Arts 2000; 9(1): 82–93
- 54. Cesari P, Bertucco M. Coupling between punch efficacy and body stability for elite karate. J Sci Med Sport 2008; 11(3): 353–356
- VencesBrito AM, Rodrigues Ferreira MA, Cortes N et al. Kinematic and electromyographic analyses of a karate punch. J Electromyogr Kinesiol 2011; 21(6): 1023–1029
- Imamura R, Iteya M, Hreljac A et al. A kinematic comparison of the judo throw Harai-goshi during competitive and non-competitive conditions. J Sports Sci Med 2007; 6(CSSI-2): 15-22
- 57. Kuragano T, Yokokura S. Experimental Analysis of Japanese Martial Art Nihon-Kempo. The ICHPER-SD Journal of Research in Health, Physical Education, Recreation, Sport & Dance 2012; 7(1): 40–45
- Fife GP, O'Sullivan D, Pieter W. Biomechanics Of Head Injury In Olympic Taekwondo And Boxing. Biol Sport 2013; 30(4): 263–268
- Chen HC, Cheng KY, Liu YJ et.al. The defence technique in Tai Chi Push Hands: A case study. J Sports Sci 2010; 28(14): 1595-1604
- 60. Chang Y, Chang J. Biomechanical analysis of Tai Chi Chuan Fixed-Step Push-Hand. In: Jensen R, Ebben W, Petushek E, Richter C, Roemer K, editors. 28 International Conference on Biomechanics in Sports. 2010 Jul 19-23; Marquette, Michigan, USA
- Huang YB, Wang LH, Lin CJ et al. The postural control in Tai Chi push-hand. J Biomech 2006; 39(Suppl.1): S563
- 62. Liu Z, Men H, Gan G. The biomechanics of Taijiquan Pushing Hands. J Biomech 1989; 22(10): 1109
- 63. Wong TSH, Fok ASL. Biomechanical Analysis On Some Martial Art Aspects Of Tai Chi Chuan. J Biomech 2007; 40(Suppl.2): S453

Cite this article as: Ghazirah M, Jamaluddin M, Muzammer Z, Wan Ruzaini Wan S. Biomechanics research on martial arts – the importance of defensive study. Arch Budo 2015; 11: 187-195