EXCESS BODY WEIGHT AS A RISK FACTOR TO WELL-BEING AND PERFORMANCE OF FLIGHT PERSONNEL: POTENTIAL STRATEGIES OF PREVENTION

Agata GAŻDZIŃSKA1, Rafał WÓJCIK1, Michał JANEWICZ1, Marek BINDER2, Mariusz WYLEZŁOŁ1, Stefan P. GAŻDZIŃSKI1

1 Military Institute of Aviation Medicine, Warsaw, Poland
2 Department of Psychology, Jagiellonian University, Krakow, Poland

Abstract: Flight personnel is at risk of excessive weight and obesity. This is due to, for instance, irregular work schedules, irregular nutritional habits, excessive workload, and an inability to plan regular physical exercise or recreation. These factors lead to excessive body weight gains, and hence to obesity. Obesity directly influences quality of life as well as readiness to perform duties by flight personnel. Obesity is an independent risk factor for various diseases such as hypertension, type 2 diabetes, coronary artery disease, atherosclerosis, each of which can lead to a loss of medical licence.

Obesity is associated with extensive caloric consumption that cannot be controlled by the affected person. State of the art research has demonstrated not only hormonal and neuronal changes associated with obesity, but also points to deterioration of cognitive functions; these changes are likely induced by suboptimal diets. Furthermore, we will review prevention strategies, as well as treatments aimed at losing weight in flight personnel already affected by obesity. Implementation of these programs may prolong the time a pilot is fit to fly and improve his/her performance.

Keywords: dietary interventions, flight personnel, lifestyle, neuroimaging, obesity
INTRODUCTION

Not only is obesity an independent risk factor for various diseases such as hypertension, type 2 diabetes, coronary artery disease, atherosclerosis, but it also directly influences quality of life as well as readiness to perform duties by flight personnel. Physicians who specialize in aviation medicine estimate that in the Polish population approximately 50% of flight personnel is either overweight or obese. Research carried out among the military personnel of different countries points to an increasing body mass index (BMI) among soldiers [1,53]. Excessive body weight and obesity is found in young recruits as well as in experienced soldiers [27,32].

Consistent with it, our studies with participation of students of Polish Air Force Academy demonstrated elevated body weight accompanied by elevated fat fraction [30,31]. The problem of obesity is aggravated by irregular work schedules, irregular eating habits, excessive workload caused by an inadequate number of personnel, and inability to plan regular physical exercise or recreation [9].

Weight gain problem in aviation parallel the increase in adiposity in the general population of Poland [75,76], and worldwide. Worldwide prevalence of obesity has reached epidemic proportions. In 2014, more than 1.9 billion adults, 18 years and older, were overweight, i.e., their BMI was larger than 25. Of these over 600 million were obese (BMI > 30). Once considered a problem only in high-income countries, obesity are now dramatically on the rise in low- and middle-income countries (WHO fact sheet No 311, updated January 2015).

Neuronal changes associated with obesity

Obesity is associated with conditions such as insulin resistance or type 2 diabetes, hypertension, and dyslipidemia. When at least two of these symptoms appear together with (abdominal) obesity, the condition is termed metabolic syndrome (MetS) [4]. Obesity, old age, and physical inactivity are the major drivers of MetS development, which affects 20-30% of adult population in most countries [20] and 25% population in Poland [77]. MetS is a cluster of risk factors for cardiovascular disease. It consists of dyslipidemia, elevation of blood pressure and glucose, as well as prothrombic and proinflammatory states. Many persons with metabolic syndrome have insulin resistance, which predisposes them to prediabetes or type 2 diabetes [20]. Obesity is a leading preventable cause of death in the United States [38]. Even in India, the number of deaths due to obesity surpassed the number of deaths associated with malnutrition [44]. Obesity and metabolic syndrome are associated with higher medical costs and loss of productivity. In the United States alone, the economic cost of treating conditions related to obesity was estimated at $190 billion a year (http://www.hsph.harvard.edu/obesity-prevention-source/obesity-consequences/economic/) and is expected to rise [67]. Regrettably, nowadays Europe also faces severe problem of obesity and MetS, and European societies bear ascending medical costs related to these conditions (e.g., [52]. We are not aware of any studies assessing the costs of obesity among flight personnel.

Recent studies highlighted the brain as a new target of detrimental effects of obesity and metabolic syndrome. Epidemiological studies consistently find that midlife obesity is a risk factor for Alzheimer’s disease (reviewed in [3], especially abdominal obesity [71] that is associated with insulin resistance and metabolic syndrome [8]). Finally, midlife obesity is a risk factor for developing dementia decades later in life, independently of comorbid conditions [70], especially if accompanied by abdominal/visceral obesity [71]. Obesity was also linked to accelerated aging in women [59].

They likely reflect some abnormality/changes of the central nervous system related to obesity and metabolic syndrome. In fact, in-vivo magnetic resonance imaging studies found smaller brain volumes of healthy elderly related to elevated BMI (e.g., [48,68]), with the former study reporting atrophy mostly in frontal lobe and anterior cingulated cortex (ACC), brain structures supporting higher cognitive functions. Additionally, elevated BMI among healthy young obese was associated with some changes in brain morphology [25,43]. Interestingly, Gunstad et al [23] reported smaller gray matter volumes in middle-aged, healthy individuals with elevated BMI. Other studies reported associations between morphological changes in the brain and elements of metabolic syndrome. These associations are of significance, as smaller brain volume (more brain atrophy) is a risk factor for cognitive decline in individuals approaching old age.

Obesity and metabolic syndrome are not only related to structural brain changes, but also to its function. Lower glucose metabolism in ACC and prefrontal cortex, as well as functional dysregulation of these structures were recently found in obese individuals [66] and were related to lower striatal dopamine D2 receptor availability [60,63]. In an independent groups of overweight and mor-
bidly obese individuals, but not in individuals at healthy weight (control group), striatal dopamine D2 receptor availability was inversely related to BMI, suggesting that dopaminergic system is involved in compulsive eating [24,64]. Similar abnormalities in dopamine D2 receptors, as described above, were induced in rodents just over 40 days on a Cafeteria diet (high fat, high carbohydrates) [28]. Other studies reported deficits of mesolimbic dopamine transmission in rodents fed high-fat diet (e.g., [19]), consistent with findings in obese humans [61]. The mechanisms behind these associations are not completely understood and are not subject of this review.

Neuroimaging studies reported morphological changes in the brains of obese individuals [24,43], whereas magnetic resonance spectroscopic studies showed lower concentrations of N-acetylaspartate (NAA) that is a marker of neuronal integrity [15,16] suggesting slowed down neuronal metabolism. The latter result is consistent with lower glucose metabolism [62] and lower cerebral blood flow (perfusion) [72] reported in same brain region. Magnetic resonance spectroscopic study of diabetic patients demonstrated similar pattern of lower NAA concentrations and increased myoinositol concentrations throughout the brain, suggesting inflammatory state [51]. Additionally, resting-state functional magnetic resonance studies demonstrated abnormalities in functional connectivity in the brains of obese persons [33,57].

Cognitive changes associated with obesity

Obesity and MetS are also associated with generally poorer cognitive skills in affected individuals. Both elevated BMI and MetS have been associated with poorer learning and memory in the elderly and poorer executive functions (problem solving, decision making) throughout lifetime (e.g., [21,40,73]), whereas metabolic syndrome has been additionally related to poorer learning and recall impairment in middle age [26]. There is growing evidence for an association between obesity and poorer executive function reflecting higher order thinking, reasoning, judgment, and planning, both in adults [22,36,45,65] and even in obese children [7]. There were also reports of poorer memory and poorer visuospatial abilities among obese individual compared to individuals at healthy weight [12,21,56]. The impact of these deficits on flight performance was not evaluated.

On the other hand, higher BMI has been associated with better attention and visuospatial ability [21], possibly reflecting adaptation to office work. Nevertheless, elevated BMI and BMI increases with age were associated with faster cognitive decline [21,50]. This is relevant also to aviation, as obesity may shorten the time when a pilot is fit to fly, independently of co-morbid medical conditions.

The role of diet

Long-term consumption of high-fat diets promotes insulin resistance and obesity both in rodents and humans [2,58]. Animal studies point to cause-effect relationship between obesity and cognitive functions. Poorer learning and memory were reported in animals fed high-fat diets (e.g., [69]) and diets with high sucrose content [29]. Moreover, excessive weight and triglyceridemia resulted in poorer acquisition of new information in mice [13]. Rats on high-fed diet, compared to a control group, demonstrated decline in retention, but not acquisition, in the water maze [69], showing some resemblance of learning and memory abnormalities reported in humans with metabolic syndrome [26]. Taken together, these results demonstrate detrimental effects of obesity and metabolic syndrome on cognitive functions.

Brain reactions to food related cues

The cause of obesity is positive energy balance with energy intake exceeding its expenditure. Obesity, weight gain are not due to inability to stick to one’s decision. State of the art research points to hormonal, neurohormonal, and neural [5]. Recent studies have also pointed to gastrointestinal hormone imbalance (reviewed in [49]) and abnormal neuronal responses to appetitive stimuli (reviewed in [5]). The latter studies, using functional imaging techniques including functional magnetic resonance imaging (fMRI), demonstrated heightened responses to visual food cues with cognitive effort to restrain consumption [5,33]. This is illustrated in Fig. 1. with our own data obtained at Creative Neuroscience (CNS) Lab at our institution hosting a 3T GE Discovery MRI scanner.

Visual food cues, i.e., pictures of palatable food induce increases activations in nucleus accumbens, ventral striatum, anterior insula, amygdala, and orbitofrontal cortex interpreted as reflecting emotional processing, emotional decision making, and taste (reviewed in [5]). On the other hand, the increased activations in caudate and putamen (dorsal striatum), medial-, lateral- and orbito-frontal cortex, as well as anterior cingulate cortex are interpreted as activation of motivation and cognitive inhibition likely aimed at resist consuming the palatable food. This is confirmed by our preliminary comparisons of brain reactions to high-caloric vs. low caloric foods that show differences
The abnormalities were related to lower striatal dopamine D2 receptor availability, as revealed in positron emission tomography (PET) studies (reviewed in [60]). However, the between a morbidly obese individual (BMI = 60) and a volunteer at healthy weight (BMI = 21; Fig. 2).

However, among morbidly obese individuals, lower activations in dorsolateral prefrontal cortex and anterior cingulated cortex (ACC), as well as in orbitofrontal cortex and somatosensory cortex in the obese participants than in lean patients were observed [63], suggesting less cognitive effort to restrain consumption (see Fig. 1). These abnormalities were related to lower striatal dopamine D2 receptor availability, as revealed in positron emission tomography (PET) studies (reviewed in [60]). However, the

Fig. 1. Visually larger extent of activations of orbitofrontal cortex in obese patient (above) than in a volunteer at healthy weight in response to high- vs. low-calorie foods (p=0.005, uncorrected). Orbitofrontal cortex is believed to be involved in emotional processing and emotional decision making.
level of exercise is known to affect behavioral appetitive control [37]. Furthermore, the level of activations in response to visual cues of palatable food may predict future consumption [34] and future weight gain.

Potential strategies to identify pilots at risk of obesity

Aforementioned changes in neural reactions to appetitive foods likely precede weight gain and onset of obesity. The same likely applies to hormonal changes that are known to accompany obesity. It is likely these changes are related to brain alterations accompanying bariatric surgeries – the only known method for lasting weight loss. E.g., gastric bypass surgery resulted post-operative reductions in mesolimbic (e.g., striatal) neural responsivity, lower desire to eat of high-relative to low caloric food within three months of the surgery, despite weight loss of less than 5% of body weight, suggesting that these neural responsivity changes in fact precede weight loss. Reductions in food wanting due to the surgery were also related to reductions in inhibitory activations in dorsolateral prefrontal cortex [41,42]. Currently, at the Military Institute of Aviation Medicine a project evaluating changes in cognition and neuronal correlates of appetite due to insertion of intragastric balloon is underway.

It is possible that individuals currently at healthy weight, but at risk of excessive fat accumulation and obesity have hormonal and brain responses to food similar to obese individuals. Identification of such individuals would allow for early interventions, shortened treatments, and cost savings.

Strategies to prevent weight gain and obesity

Prevention of obesity-related complications costs less than their treatment, as is the case in other fields of medicine. These economic considerations have an additional aspect in the case of flight personnel. When obesity-related complications lead to revocation of medical licence of an experienced pilot, years of training are needed to replace him/her.

In accordance with contemporary medical knowledge, to prevent development of conditions co-morbid with obesity, a complex system of care has to be introduced. The aim of this system is early diagnosis of impeding weight problems through detection of excessive body weight with
an accumulation of adipose tissue. That enables
a therapeutic intervention. Obesity experts agree
that it is necessary to manage obese patients in
a comprehensive manner. Currently, a holistic ap-
proach toward obesity includes:
- Alternation of nutritional habits with the use of
modern nutritional medicine methods;
- Physician-guided pharmacological support of
losing weight;
- Psychological support in individual or group
therapy;
- Gradually increasing daily physical exercise that
is suited to the state of health and capabilities
of the patient;
- Possible surgical treatment.

Such a comprehensive approach is substanti-
ated by studies reporting favorable outcomes of
the management of obesity [14,39,54]. The main
principles of obesity management are based on a
long-term program, often lasting throughout a
life span, as obesity is a chronic disease not re-
mitting spontaneously. Management of obesity
should take into account risk factors for obesity
and be concentrated on the maintenance of nor-
mal body weight in the long term.

Appropriate method should be selected for
each patient individually. With the development
of nutritional medicine it has become clear that
rational nutrition is the single most important fac-
tor that reduces the risk of obesity and other nutri-
tion-dependent diseases. Typically, management
of the majority of diseases necessitates the intro-
duction of a nutritional program that poten-
tiates pharmacotherapy, decreases hospitalization time,
and reduces the risk of complications. Therefore,
dieticians and a well-organized nutritional coun-
seling system play a fundamental role in the fight
with the epidemic of obesity. Nutritional coun-
seling is a very important element of global as
well as European strategies aimed at prevention of
excessive weight and/or obesity, and co-morbid
chronic non-communicable diseases (for instance,
hypertension, allergies, ischemic heart disease). It
constitutes an integral part of the entire approach
towards obesity. A well-balanced diet tailored to
metabolic needs and nutritional deficiencies in-
creases the effectiveness of pharmacotherapy and
surgical treatments and reduces the prevalence of
complications (for instance, urinary tract infection,
respiratory infections), number of deaths, duration
of treatment and rehabilitation, and health-care
spending.

Currently, a dietitian is an interdisciplinary spe-
cialist who analyzes food products, plans, employs
and oversees evidence-based nutritional pro-
grams for individuals and groups. Dietician-guid-
ed nutritional education is especially important in
order to form correct attitudes towards nutrition
with a special focus on appropriate food selection,
meal planning, and use of adequate food prepara-
tion technologies [17].

Educational activities that are suited to socio-
economic needs and conditions of patients
should contribute to formation of health-oriented
attitudes. Basic tasks of nutritional counseling in
terms of prevention and management of obe-
sity are the correction of inappropriate nutritional
behaviors and more importantly the encourage-
ment to change lifestyle and to increase physical
activity.

Regular physical exercise that increases energy
expenditure leads not only to a reduction of exces-
sive body weight but causes also many favorable
changes in the organisms such as an increase in
muscle mass, gain in bone mass, improvement in
glucose and lipid metabolism, reduction in resting
arterial blood pressure, and improvement of well-
being and general mental functioning [46,74].

Physical activity that is recommended for health
promotion and prophylaxis of cardiovascular dis-
ases includes the following: physical exercise
three times a week, moderate intensity of exercise
(approximately 60% of maximal pulse, duration of
20-60 minutes), endurance exercise, and adjunctive
resistance training. Energy expenditure dur-
ing one session of exercise should amount to 200-
300 kcal and 1000 kcal for a whole week [10].

According to the literature on management of
prevention of excessive body weight and obesity,
45-60 minutes of daily exercise is recommended
for preventions of excessive body weight whereas
60-90 minutes of daily exercise should be per-
formed in order to prevent relapses of obesity.
Daily exercise should be planned in 30-minute
blocks which can be gradually increased [47,55].
The frequency of training in people with exces-
sive body weight and obesity should not be lower
than two sessions a week, but a frequency of 3-6
sessions a week of dynamic exercise lasting 30-60
minutes is preferred [18,47].

People with excessive body weight and obesity
have a low physical exercise capacity and agility
and therefore the frequency of training should be
suited to their capabilities in order to minimize the
risk of cardiovascular complications, and muscu-
lloskeletal injury. Moderate exercise intensity is re-
commended (30-70% of maximal intensity) without
an excessive strain of knee joints, hip joints, and
vertebral joints [17].
It has been shown many times that accelerometers are an efficient tool for the assessment of the actual level of physical exercise. Additionally, they play an educational and motivational role with respect to healthy lifestyle promotion, and increasing the amount of time spent actively [11,35].

Management of obesity is a long-term process with no single universal treatment approach [6]. Prevention and management of excessive body weight and obesity among military personnel should be based on a systematic assessment of nutritional state – evaluation of body composition, anthropometric analysis enabling early diagnosis at periodic health examinations [6], detailed procedures of dealing with obese patients depending on BMI values, and body composition values, assessment of nutritional knowledge regarding physical exercise, and health-oriented behaviors among flight personnel. Promotion and introduction of appropriate nutrition and other health-oriented activities including popularization of physical exercise among military personnel through establishing an internet platform for health promotion, which should also be available as a mobile application. Access to a “virtual dietician” would make the employment of nutritional recommendations easier regardless of location.

CONCLUSIONS

Obesity is a serious risk to flying personnel that can adversely affect their performance and puts them at risk of medical conditions that could shorten their careers, such as heart disease or cancers, to name a couple. Preventive strategies to reduce stress and improve quality of life should be employed. Nevertheless, tools identifying flight personnel at the highest risk of developing obesity would be of interest.

AUTHORS’ DECLARATION:

REFERENCES

Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats (vol 13, pg 635, 2010). Nature Neuroscience 2010; 13(8):1033-.

Review Article

