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 abstract 
   ‪All parents’ dream is to have healthy children. The question whether the parents' lifestyle affects the 

quality of their progeny's health has been bothering scientists and society for many years. Based on 
epidemiological studies, it has been shown that physical activity during pregnancy is beneficial both for 
the health of the mother and the newborn. A significant number of studies conducted so far have shown 
that exercises performed by fathers modulate future generations by affecting the sperm epigenome. 
Epigenetics plays a key role in transmitting the response of the parents' environment and their lifestyle 
onto the characteristics and health of their progeny. 
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introduction 
All parents’ dream is to have healthy children. The question whether the parents' lifestyle 
affects the quality of their progeny's health has been bothering scientists and society for 
many years. Many years of research have shown that environmental factors in critical 
stages of development – such as the prenatal and perinatal period – may influence the 
risk of chronic diseases in the progeny [1, 2].

It is indisputable that physical exercise is an essential part of a healthy lifestyle. Exercise 
is recognized as an important non-pharmacological preventive and/or therapeutic 
intervention which may slow the progression or harmful effects of numerous metabolic, 
cardiovascular, oncological and neurodegenerative diseases [3].

Pregnant women are recommended physical activity and exercise by The American College 
of Obstetricians and Gynecologists (ACOG). According to the ACOG, in the absence of 
obstetric or medical complications or contraindications, physical activity during pregnancy 
is safe and desirable, and pregnant women should be encouraged to do or keep doing it 
[4]. Data from human and animal studies have demonstrated numerous benefits of physical 
exercise performed by pregnant women and fathers before their child is conceived. It has 
been revealed that regular aerobic exercise of mothers during pregnancy improves or 
maintains their physical fitness and may prevent excessive weight gain [5–7]. Observational 
studies of women exercising during pregnancy showed, among others, such positive 
effects as the reduction of the risk of gestational diabetes, gestational hypertension and 
Caesarean delivery [8–12]. Exercise during pregnancy may also lower glucose levels in 
women with gestational diabetes or help prevent pre-eclampsia [13, 14]. A systematic 
review and meta-analysis from 2017 found that in overweight and obese women in single 
pregnancies, compared with women leading a more sedentary life, aerobic exercise of 
around 30–60 minutes, 3–7 times a week, was associated with a reduction in the frequency 
of preterm births [15]. A 2019 systematic review and meta-analysis, however, demonstrated 
that in mothers with antenatal diseases (chronic hypertension, type 1 diabetes, and type 
2 diabetes), prenatal exercises reduced the chances of a Caesarean section by 55% and 
did not increase the risk of complications for both the mother and the newborn [16].

The studies also showed that physical activity may be an important factor in the prevention 
of depressive disorders in women during the puerperium [17, 18]. Proper exercise is 
good for both the mind and the body – skeletal muscles in particular. Exercise increases 
the effciency of muscle metabolism, improves the biological functions of mitochondria,  
regulates the transformation of types of muscle fibers and increases muscle strength. 
Studies in recent years show that epigenetic regulation plays a very important role in all 
these processes. Epigenetics also means that the beneficial effects of physical exercise 
are inherited and passed on to future generations. Moreover, more and more evidence 
shows the protective effect of the parents’ training on their progeny and its association 
with the prevention of chronic diseases, including obesity, diabetes and hypertension [19]. 
The mothers’ or fathers’ exercise – before their child is conceived – appears to be one of 
the most logical and cost-effective ways to potentially improve their progeny’s health.

epigenetics 
Currently, epigenetics is defined as ‘heritable changes in gene expression that occur without 
alteration in a DNA sequence’. We know three separate and intertwined mechanisms 
regulating the ‘epigenome’ – i.e. DNA methylation, histone modifications and non-coding 
RNA (ncRNA), particularly miRNA [20]. These processes affect transcript stability, DNA 
folding, nucleosome positioning, chromatin condensation and, ultimately, how the nucleus 
is arranged. They synergistically and collectively determine whether a gene is silenced 
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or activated, and when and in what tissue it will be expressed. DNA changes mediated 
by any of these mechanisms are heritable – not only are they passed on to daughter cells, 
but also to subsequent generations [21].

DNA methylation refers to the covalent addition of a methyl group derived from 
S-Adenosyl-L-methionine to the fifth carbon of the cytosine ring resulting in the fifth 
base – 5-methylcytosine (5meC). The reaction is catalyzed by DNA methyltransferases 
and accessory proteins (Dnmt1, Dnmt3a, Dnmt3b, Dnmt2 and Dnmt3L). Primarily, in 
all eukaryotic species, methylation occurs in cytosines located 5’ to guanines which are 
known as CpG dinucleotides (CpG) [22]. CpG dinucleotides in the genome are frequently 
found in dense clusters to form the so-called CpG islands. CpG islands mainly co-localize 
with promoters and transcription start sites. Unlike the vast majority of CpGs located in 
the intergenic regions and repetitive elements, CpG islands are typically unmethylated 
– regardless of the transcriptional activity of a neighboring gene – but if they become 
hypermethylated, they promote gene silencing [23]. While CpG methylation at transcription 
start sites is generally associated with gene silencing, recent studies have shown that 
DNA methylation – if it is in the gene body – may be positively correlated with gene 
transcription and have its impact on the occurrence of alternative splicing [24]. The 
results of the whole methylome DNA study revealed that abnormal methylation patterns 
in diseases are often absent in CpG islands, but occur in distal regulatory regions—such 
as enhancers and isolators – and in the so-called ‘edge’ regions that flank on both sides 
of the CpG island (up to 2 kb in distance) [25, 26]. DNA methylation alters the binding of 
transcriptional factors and other proteins which interact with chromatin, and, as a result, 
fine-tune gene expression.

Non-coding RNAs (ncRNAs) that are not translated into proteins may be divided into two 
groups – i.e. ordinal non-coding RNA and regulatory non-coding RNA. Regulatory RNA is 
mainly categorized by size – short-chain non-coding RNAs (including siRNA, miRNA, and 
piRNA) and long non-coding RNA (lncRNA) [27, 28]. In recent years, many studies have shown 
that ncRNA plays an important role in epigenetic modification and may regulate expression 
at the gene and chromosome levels [29–31]. Many miRNAs are involved in the transmission 
of acquired traits to the progeny and have important biological functions, including cell 
proliferation, apoptosis, metabolism, neuronal patterns, hematopoietic differentiation, and 
the process of immunization. Furthermore, miRNAs may act as epigenetic modulators by 
targeting key enzymes responsible for epigenetic reactions, such as DNA methyltransferases 
(DNTM), histone deacetylases (HDAC) and methyltransferases (EZH) [32].

Histone modifications may also lead to the activation or suppression of gene expression. 
Linear DNA is wrapped in an octameric complex of two molecules of each of the four 
histone proteins – including H2A, H2B, H3, and H4—which form an array of nucleosomes. 
N-terminal ends of histones contain a variety of post-translational modifications, including 
acetylation and methylation of lysine residues at N-terminal ends of histones (H3 and H4) 
which are the most correlated with transcriptional activity. Histone acetylation is usually 
associated with transcriptional activation as a result of lower affnity of an acetylated  
histone with DNA, which allows chromatin relaxation. Conversely, deacetylation of histones 
correlates with transcriptional silencing and the heterochromatic state [21]. Not only does 
histone acetylation facilitate destabilization of DNA-nucleosome interactions for active 
transcription, but—when provoked on a global scale—it promotes rearrangements in the 
three-dimensional genome architecture, thus enabling extensive translocation of genomic 
loci and regulatory regions to a nuclear pore complex [23, 33].

Some epigenetic modifications directly affect the cognitive functions of the body and are 
associated with better results in learning tests and a better memory [34] – for example with 
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the very phenomenon of histone acetylation that is directly related to active transcription 
and the establishment of a long-term memory [35]. Histone levels are regulated by  
a balance between the protein content in histone acetyltransferase (HAT) and histone 
deacetylase (HDAC). HAT catalyzes the transfer of acetyl groups to histone proteins, 
whereas HDAC removes acetyl groups. It has been shown that overexpression of HDAC2 
in the hippocampus impairs memory and long-term enhancement, whereas HDAC2 knock-
out mice show an improvement in memory [36]. HDAC2 is an important enzyme related 
to the process of learning and memorization, and its hyperactivity determines memory 
formation and synaptic plasticity [37, 38].

mother's physical activity 
Based on epidemiological studies, it has been shown that physical activity during pregnancy 
is beneficial both for the health of the mother and the newborn [39–43]. However, the impact 
of maternal exercise on fetal development – skeletal muscle development in particular – is 
largely unexplored and remains an interesting issue that requires a more in-depth analysis.

Skeletal muscles serve very important functions in the human body. They make it possible 
to move and be physically active, maintain a proper body posture, protect the skeleton 
and internal organs, regulate energy metabolism of the whole body and maintain immune 
homeostasis. Skeletal muscles make up around 40% of the body weight and are key 
to the proper use of glucose and lipids in the human body. Exercise protects against 
mitochondrial malfunction and muscle atrophy from diet-induced obesity, increases the 
basal metabolic rate, and prevents metabolic syndromes. The skeletal muscle epigenetic 
landscape modulated by physical exercise fine-tunes the delicate balance between gene 
expression and gene silencing controlled by transient or stable transcriptional or post-
transcriptional mechanisms [44, 45].

It has been proven that skeletal muscle is a programmable tissue and can “remember” 
mechanical and metabolic stimuli in the early stages of life through epigenetic mechanisms, 
which affects its function throughout lifetime [46,47]. Epigenetic memory effects have recently 
been illustrated for key genes involved in mitochondrial biogenesis, including the most 
comprehensive transcription coactivator controlling energy metabolism – i.e. peroxisome 
proliferator-activated receptor gamma coactivator 1-α (PPARGC1A; PGC-1α protein) [48].

Studies on mice have shown that maternal exercise activates AMPK and α-KG mediated 
DNA demethylation—which is correlated with an increased oxidative capacity and exercise 
endurance—in the PPARGC1A gene promoter that permanently increases PPARGC1A 
expression in the progeny’s muscles [49]. AMPK–AMP-activated protein kinase is the 
main regulator of energy metabolism [50]. It may be phosphorylated as a result of 
regular exercise, thereby triggering expression and phosphorylation of PGC-1α [51, 52]. 
By increasing the concentration of α-ketoglutarate (α-KG), AMPK is also an important 
mediator in epigenetic modifications, including DNA demethylation [53].

Laker et al. proved that maternal exercise during pregnancy may completely alleviate 
the progeny's metabolic disturbances caused by adverse effects of the mother's high-fat 
diet. In their studies they found that the mother’s high-fat diet caused hypermethylation 
(eliminated by maternal exercise) of the PPARGC1A promoter at CpG–260 [54].

Apelin is a peptide and endogenous ligand of a G protein-coupled receptor that is mainly 
expressed in the placenta, adipose tissue and skeletal muscles in response to exercise [55]. 
Apelin increases the AMPK activity, which enhances mitochondrial biogenesis and the 
mitochondrial respiratory function, possibly by stimulating PGC-1α expression [56]. It has 
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been proven that maternal exercise increases the level of apelin in the fetus’s circulation 
and adipose tissue of both the mother and her progeny [57]. Consequently, an increase in 
apelin in the muscles of the fetus and progeny was also found, which correlated with the 
AMPK activation and increased DNA demethylation in the PPARGC1A promoter. 

Muscle fibers are divided into glycolytic and oxidative fibers, with oxidative fibers particularly 
rich in mitochondria and highly effcient in utilizing glucose and fatty acids [58]. It has  
been found that maternal exercise enhances the oxidative capacity of the progeny’s muscles 
by changing the types of muscle fibers from glycolytic to oxidative without altering muscle 
mass, which may be associated with increased mitochondrial biogenesis [59].

A proper balance between DNA hypermethylation and demethylation in the hippocampus 
is essential for the proper function of neurons on which the memory processing is based. 
DNA hypermethylation is usually associated with silencing of genes which are important for 
cellular homeostasis. In contrast, DNA demethylation is associated with an increase in the 
expression of genes promoting plasticity, which, in turn, induces neuronal plasticity [60].

Several studies have demonstrated the benefits of maternal aerobic exercise for tasks 
related to memorization and learning performed by the progeny which are partially related 
to the high levels of the Brain Derived Neurotrophic Factor (BDNF) and hippocampal 
neurogenesis [61–63].

Segabinazi et al. [64] revealed that the progeny of mothers who had taken exercise before 
they became pregnant showed a decrease in global hippocampal DNA methylation in their 
adult life, which was related to cell proliferation in the hippocampus.

Dayi et al. [61] found that male adults whose mothers had exercised on a treadmill during 
pregnancy had a better learning curve. The progeny of mothers who exercised during 
pregnancy showed a decrease in the amount of HDAC2 in the hippocampus.

Meireles et al. [38] also proved that the progeny of mothers who had practiced strength 
training during pregnancy showed slightly better results in terms of memorization and 
learning tasks as well as a decrease in the HDAC2 level in the hippocampus. The progeny 
of mothers who exercised prior to gestation showed high cell proliferation and high IGF-
1 expression in the dentate gyrus of the hippocampus, as well as changes in global DNA 
methylation and H4 acetylation.

father's physical activity 
It is not only mothers' exercise that has its influence of the health of their children. A 
significant number of studies conducted so far have shown that exercises performed 
by fathers modulate future generations by affecting the sperm epigenome [65]. 
Spermatogenesis is an ongoing process and the father's life experiences may reprogram his 
sperm quality and epigenetic profile. Evidence suggests that physical exercises performed 
by fathers alter DNA methylation in their sperm [66].

Claycombe-Larson et al. [67] showed that paternal exercise reduces expression of IL-1β 
and TNF-α mRNA in the placenta, which results in a beneficial effect on its inflammation, 
fetal tissue weight and, consequently, on the progeny’s body weight.

Several studies have revealed that aerobic exercise performed by fathers has a positive 
effect on the plasticity of neurons in their progeny, which significantly affects learning 
and memorization. Yin et al. [68] showed that paternal treadmill exercises improved spatial 
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learning and memorization in their progeny—which was accompanied by increased expression 
of the brain derived neurotrophic factor (BDNF) and reelins in the hippocampus – compared 
to the progeny of fathers living a sedentary lifestyle. These two proteins play a significant role 
in neuronal survival, maturation and growth, and act as modulators for neurotransmitters.

Park et al. [69] also showed that paternal exercise improves spatial learning, increases 
expression of BDNF and the receptor tyrosine kinase B (TrkB) in the progeny.

Several independent research teams, including Mega et al. [70] and Spindler et al. [71], 
proved that aerobic exercise causes a significant reduction in global DNA methylation of 
the hippocampus in the progeny of fathers who take exercise, compared to the progeny 
of fathers living a sedentary lifestyle. The aerobic exercise protocol also induced changes 
in the expression of hippocampal genes related to the cell cycle and mitochondrial 
processes, as well as increased mitochondrial citrate synthase activity in the hippocampus. 
McGreevy et al. [72] suggest that mitochondrial integrity is crucial for cell differentiation 
and dendritogenesis in the neurons of the newborn children and that it may modify the 
progeny’s capacity for memorization.

Batista et al. [73] discovered that paternal swimming training could improve the metabolic 
profile of the progeny's liver, thereby alleviating the harmful effects of obesity. Swimming 
training regulated lipogenesis of the CPT1, PPAR-1Α and PRKAA2 genes and induced an 
increase in the PRKAA2 and pAMPK levels in the liver of the progeny exposed to a high-fat 
diet, compared to the control group. These changes were also accompanied by a decrease 
in the level of excessive fat build-up in the liver.

Krout et al. [74] showed that in the skeletal muscles of the progeny of fathers who do 
physical exercise, insulin signaling pathway genes (GLUT4, IRS1 and PI3K) are expressed 
more, which prevents the risk of type 2 diabetes.

However, McPherson et al. [75, 76] provided convincing evidence that swimming exercises 
performed by fathers who eat a high-fat diet lower the levels of free fatty acids, cholesterol 
and C- reactive protein in the blood of the progeny.

conclusions 
Recent studies have shown that parental physical activity plays a positive role in modulation 
of the progeny’s phenotype. Not only is the progeny’s health positively influenced by the 
mother's exercises done before and during pregnancy, but also by the father’s exercise 
before their child is conceived. In addition, physical exercise done in the early stages of 
life appears to alleviate disadvantages inherited from the gestational environment and 
provides the progeny with long-term health benefits throughout their adult life. Adaptations 
related to physical activity are coordinated by epigenetic signaling which fine-tunes 
gene expression controlled by transient or stable transcriptional or post-transcriptional 
mechanisms. Undoubtedly, epigenetics plays a key role in transmitting the response of 
the parents' environment and their lifestyle onto the characteristics and health of their 
progeny. Therefore, it should be remembered that the varied patterns of DNA methylation 
in the skeletal muscle tissue of the progeny may, unfortunately, reflect “bad memories” 
resulting from the parents' lack of physical activity.
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