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In the paper, a general overview of the development and applications of lower body 
negative pressure (LBNP) technology have been provided. The article also describes 
the LBNP designs used to investigate the relationship between tolerance to negative 
pressure around the lower body and tolerance to acceleration (+Gz).

A systematic review of the literature on the development and application of LBNP in 
the scope not limited to the time or geography framework was explored. Searches 
were performed using predefi ned keywords and fi lters for LBNP (e.g., aerospace, me-
dicine, cardiovascular, space, acceleration, Gz). Databases such as PubMed, IEEE Xplore, 
ScienceDirect, and others relevant to this fi eld of study were selected for the search.

The results of the review were organized by thematic categories (LBNP development, 
applications and use to simulate +Gz-induced cardiovascular strain). Syntheses of the 
results are presented, highlighting key themes and insights.

The use of LBNP to simulate cardiovascular strain, typically induced by positive G for-
ces (+Gz) in fi ghter jet fl ight, has played an important role in our understanding of the 
cardiovascular response to gravitational forces. This knowledge not only benefi ts pilots, 
but also has wider implications for healthcare and working conditions where indivi-
duals may face similar physiological challenges. Although numerous reports support 
the development of LBNP for space mission applications, there is no evidence for the 
use of LBNP to simulate accelerations greater than +1 Gz over the past two decades. 
However, further research in this area is still warranted. 

aviation medicine, LBNP, negative pressure, acceleration stressKeywords:
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INTRODUCTION

Lower Body Negative Pressure (LBNP) is a 
physiological technique which involves creating 
a negative pressure (pressure below atmospher-
ic level) around the lower extremities. It is often 
used in research and medical settings to study the 
cardiovascular and physiological responses that 
occur under conditions similar to those encoun-
tered during upright posture and gravitational 
stress [71,77]. The primary purpose of LBNP is to 
investigate how the body responds to changes 
in pressure, particularly in relation to blood cir-
culation. When a person is in an upright position 
(Fig. 1), gravity causes blood to pool in the lower 
extremities, which can lead to a decrease in ve-
nous return to the heart (orthostatic intolerance 
research). LBNP can simulate this eff ect by creat-
ing a negative pressure around the lower body, 
redistributing blood and inducing physiological 
changes [25,26]. 

During LBNP, the individual lies supine with 
their legs positioned in the chamber up to the lev-
el of the iliac crest (Fig. 1). The air pressure within 
the chamber is reduced using a vacuum pump. As 
per the principles of fl uid dynamics, blood fl ows 
from the higher pressure region (the upper body, 
which is outside the chamber) towards the lower 
pressure region (the lower abdomen and legs 
within the chamber).

The applied negative pressure increases the 
transmural pressure in the blood vessels of the 
lower part of the body and stops some of the blood 
in this venous system [25]. This increase mainly af-
fects the superfi cial blood vessels, especially the 
veins, because of the fragility of their walls [41]. 

The resulting increase in venous bed volume leads 
to a general reduction in venous pressure, includ-
ing central venous pressure. A reduction in central 
venous pressure leads to a consequent reduction 
in left ventricular end-diastolic volume, which in 
turn leads to a reduction in cardiac stroke volume 
[24–26,61]. 

In recent years, there has been a signifi cant in-
crease in research interest using LBNP [2,8,31,63]. 
Although several reviews have already been con-
ducted on these studies [16,31], the authors of the 
presented paper decided to focus on a review of 
LBNP designs in applications to simulate +Gz-in-
duced cardiovascular strain.

METHODS

To comprehensively identify, evaluate, and syn-
thesize all available research evidence on LBNP 
applications to simulate +Gz-induced cardiovas-
cular strain we conducted a systematic literature 
review. This method involves a structured and rig-
orous approach to literature searching, screening, 
and selecting articles based on predefi ned criteria. 

Databases such as PubMed, IEEE Xplore, Sci-
enceDirect, and other subject-specifi c databas-
es were selected for the search. Searches were 
performed using predefi ned keyword ‘LBNP’ or 
phrase ‘lower body negative pressure’. The fi l-
ters applied were not limited to publication date 
range, language and study type. The inclusion cri-
teria included studies that addressed at least one 
of the following issues ‘aerospace’, ‘medicine’, ‘car-
diovascular’, ‘space’, ‘acceleration’, and ‘Gz’. Exclu-

F ig. 1.  The lower body negative pressure (LBNP) chamber connected to both the old (a) [70], and new (b) [17] versions of 
the tilt table developed in Military Institute of Aviation Medicine (Warsaw, Poland) used under CC BY 4.0 [15] .
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to space travel. Researchers and medical profes-
sionals began exploring its applications on Earth 
for studying cardiovascular responses, orthostatic 
intolerance, and other conditions. LBNP was uti-
lized in various research settings to simulate the 
physiological eff ects of gravity on the cardiovas-
cular system. In aerospace medicine it is used for 
training astronauts, understanding cardiovascular 
deconditioning in microgravity, and developing 
countermeasures to mitigate the health risks as-
sociated with space travel [78]. Beyond aerospace, 
LBNP technology has found applications in clini-
cal settings and rehabilitation. Researchers have 
explored its potential for improving orthostatic 
tolerance in individuals with conditions like pos-
tural orthostatic tachycardia syndrome and for 
enhancing cardiovascular fi tness in patients with 
various health conditions.

The fi ndings of the literature review on LBNP 
devices and the observations made by scientists 
during research using this technology are pre-
sented in Tab. 2.

sion criteria included non-peer-reviewed articles. 
The results of the search, conducted according to 
the specifi ed criterion across the three databases, 
are presented in Tab. 1. After a comprehensive 
search, 56 papers were identifi ed for analysis.

LBNP development
The concept of using negative pressure to study 

and counteract the physiological eff ects of micro-
gravity dates back to the 1960s and 1970s when 
space agencies like NASA began to explore the 
challenges of extended space travel. Researchers 
recognized the importance of understanding how 
the lack of gravity could impact the cardiovascu-
lar system. LBNP technology gained more atten-
tion in the 1980s when it was developed and im-
plemented for use in space missions. It became a 
part of the countermeasures against the negative 
eff ects of prolonged weightlessness experienced 
by astronauts during space travel. LBNP devices 
were incorporated into space shuttles and space 
stations to help maintain astronauts’ cardiovascu-
lar health. The benefi ts of LBNP were not limited 

Keyword phrase
Number of papers found in the database

PubMed IEEE Xplore ScienceDirect

LBNP or ‘lower body negative 
pressure’

- 3529 45 646

medicine 1309 29 418

cardiovascular 1565 19 528

aerospace 189 6 95

space 464 8 324

acceleration 78 2 140

Gz 49 5 43

Tab.  1.  Number of papers found in the databases.

Year Researchers Findings

1962 Graveline [32]
The fi rst prototype LBNP device was developed and used for spacefl ight-related research. The -30 
mmHg LBNP was shown to induce cardiovascular responses similar to those that seen when standing 
upright at 1G.

1963 Greenfi eld et al. [33] Brown et al. [7] The eff ects of sudden LBNP-induced overload on the cardiovascular system were observed.

1965-1969 Stevens and Lamb [74]
Use of LBNP to assess orthostatic intolerance.

LBNP has been shown to have advantages over the tilt table test, and has been shown to improve 
orthostatic tolerance in bedridden patients.  

1969 Musgrave et al. [60]

LBNP of -40 mmHg in the supine position induces similar changes in lower limb blood volume to 
those occurring during standing.

It was observed that the lack of stimulation of the carotid baroreceptors during LBNP means that 
more negative pressure is required to induce the same cardiac responses as during upright standing.

1971 Musgrave et al. [59] It was observed that the body responses evoked by a 70° tilt were similar to those evoked by an LBNP 
of -40 mmHg (in the supine position).

1971 Gazenko et al. [28] An LBNP was used in fl ight. Subsequently, a Chibis-LBNP suit was developed.

1974 Berry [5] LBNP was used before and after spacefl ight (the Apollo programme) to investigate orthostatic 
intolerance.

1977 Johnson et al. [39] LBNP was found to be a good predictor of orthostatic intolerance after spacefl ight (Skylab program-
me study). Astronauts adapted to LBNP-induced orthostatic intolerance after a 4 week stay in space.

1989-1995 Lathers and Charles [46] LBNP used during the fl ight to mitigate orthostatic intolerance after spacefl ight.

1998 Ertl et al. [19]
The fi rst recordings of muscle sympathetic nerve activity) during LBNP were made during the Neuro-
lab mission in space. The German space agency developed a fl exible LBNP chamber with zips on the 
side to allow access to the sagittal nerve.

Tab.  2.  The development of LBNP applications [31].
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insights into physiological responses and adapta-
tions, however, it is not a therapy or treatment for 
medical purposes in itself.

Simulation of +Gz-induced cardiovascular 
strain with the use of LBNP

As shown in Tab. 3, the LBNP chamber has 
found many applications. Researchers choose de-
vices based on factors such as the level of nega-
tive pressure needed, the participant’s position 
(sitting, standing, laying or exercising), and the 
overall goals of the study. These factors infl uence 
the way in which the chamber is designed. The 
design of the chamber can take a number of dif-
ferent forms [17,20,23]. Other examples include 
the LBNP-based devices for spacefl ight [2,9,54,64] 
and clinical applications [9,34,42]. Tab. 4 shows 
the LBNP technologies and their applications. It 
is important to remember that advances in tech-
nology and ongoing research may lead to the de-
velopment of new and more sophisticated LBNP 
devices in the future. 

LBNP applications
LBNP has been used in various contexts, includ-

ing aerospace medicine to study the eff ects of 
microgravity on the cardiovascular system, as well 
as in cardiovascular research to understand the 
mechanisms involved in orthostatic intolerance 
and conditions like orthostatic hypotension. It was 
fi rst applied to cardiovascular research in 1965 
[74]. Overall, the aim of LBNP studies is to gain 
insights into the physiological responses of the 
human body to changes in gravitational forces. 
This research has implications for a wide range of 
fi elds, from space exploration to clinical medicine 
and rehabilitation as well as aviation psychology. 
Some of these goals were shown in Tab. 3.

The core of the application of LBNP is to under-
stand how LBNP can be used to study the complex 
nature of physiological responses to a specifi c 
negative pressure agent. It is important to note 
that the application of LBNP should be done un-
der controlled conditions and with consideration 
of individual health conditions. Researchers and 
healthcare professionals use LBNP as a tool to gain 

Area of application Purpose of application

Understanding cardiovascular responses to investigate how the cardiovascular system responds to changes in gravitational forces. This includes examining altera-
tions in heart rate, blood pressure, cardiac output, cerebral blood fl ow and venous return when a person is subjected to 
simulated gravitational stress [21,27,36,37,40,43,58,62,72]

Orthostatic intolerance research to simulate the physiological challenges associated with standing up or being in an upright position. Research in this area 
helps understand the mechanisms behind orthostatic intolerance, where individuals may experience symptoms such as 
dizziness, lightheadedness, or fainting upon standing [1,17,18,30,68,69,71]

Microgravity research in the fi eld of aerospace medicine, to simulate the eff ects of microgravity on the cardiovascular system. This research 
is crucial for understanding how astronauts' bodies respond to the absence of gravitational forces during space travel 
[29,50,51]

Space medicine to develop diff erent countermeasures against the physiological changes experienced by astronauts in space. Strategies 
to mitigate the negative eff ects of prolonged weightlessness on the cardiovascular system and other body functions are 
explored. Chibis pressure suit (Fig. 2a) has the ability to apply negative pressure on the lower half of an astronaut's body. 
This technique may prevent fl uid from accumulating in an astronaut's brain [54]

Rehabilitation and physical conditioning to help individuals who may have diffi  culty with upright posture. Additionally, it can be used to investigate the potential 
benefi ts of simulated gravitational stress for physical conditioning [38]

Clinical to understand and potentially treat conditions such as orthostatic hypotension, where a person experiences a signifi cant 
drop in blood pressure upon standing [9,34,42,48]

Emergency medicine To identify individuals prone to rapid development of circulatory collapse following hemorrhage [10]. Studies of physio-
pathological mechanisms in the body’s response to hemorrhage simulated with LBNP (10-20 mmHg simulates the loss 
of ~400-500 ml of blood, while in the 20-40 mmHg range the loss of 500-1000 ml of blood, while greater than 40 mmHg 
refl ect the loss of more than 1000 ml of blood) [8,11–14,31,63,66,67,77]

Aviation psychology to assess cognitive and psychomotor performance under conditions of brain hypoxia and pressure changes [3]

Technology Design

Customized chambers Some studies (mainly clinical) use custom-built chambers (Fig. 2d) that can be sealed around the lower body. These 
chambers are equipped with a vacuum system to create negative pressure, allowing researchers to control the level of 
pressure applied [14]

LBNP treadmill Treadmill-based LBNP systems combine negative pressure with treadmill exercise [47,55–57,73]. Participants walk or run 
on a treadmill within a sealed chamber, and negative pressure is applied to the lower body. This setup is often used to 
study the cardiovascular responses to exercise under simulated gravitational conditions

LBNP chairs Specialized chairs equipped with LBNP capabilities have been developed for research studies. Participants sit in these 
chairs, and negative pressure is applied to the lower body (Fig. 2c). These chairs are used to simulate the gravitational 
stress in the upright and seated positions [71,75].

Portable LBNP devices Some portable LBNP devices have been designed for ease of use and mobility [2,64]. These devices may be used for 
specifi c applications, such as studying the eff ects of simulated gravitational stress during daily activities e.g., on the 
International Space Station or on a journey to Mars (Fig. 2).

Water immersion systems Water immersion LBNP systems are used to study the eff ects of simulated gravity in a buoyant environment [35]

Tab.  3.  Applications of LBNP.

Tab.  4.  The LBNP technology.
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has been used to study the mapping of physio-
logical phenomena occurring during +Gz fl ights 
[44,52,65,76], when the subject was in the upright 
seated position, are shown in Figs. 3-6.

Lategola & Trent [44] were probably the fi rst 
who developed and tested an upright seated ver-
sion of the supine LBNP box (Fig. 3). It was found 
that a negative pressure of approx. -40 mmHg is 
considered the equivalent of a 2 ±G(z) stress [45]. 
The researchers also noted that the LBNP box 
could generate and withstand a test pressure of 
approx. -120 mmHg.

The use of LBNP technology to study the ef-
fects of acceleration stress, that occurs during 
military fast-jet aircraft fl ying or exposure in a 
human centrifuge, required the use of an ap-
propriate body position and chamber design. 
Studies [4,6,22,39,49,53,79] in which the authors 
investigated the relationship between LBNP and 
tolerance to +Gz acceleration have neglected 
to address the issue of diff ering body positions 
commonly observed during LBNP and +Gz test-
ing. Specifi cally, LBNP is conducted in the supine 
position while +Gz testing is conducted in the up-
right seated position. The LBNP technologies that 

Fig.  2.  Applications of the LBNP chambers: (a) Russian Chibis suit, (b) traditional static LBNP chamber, (c) seated LBNP 
device, and (d) self-generated LBNP device. [54] used under CC BY 4.0 [15].
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compared with the hemodynamic changes dur-
ing the simulated acceleration occurring when a 
shuttle’s re-entry into the Earth’s atmosphere. This 
comparison provided evidence that the negative 
pressure of -40 mmHg at LBNP in an upright seat-
ed position induces similar hemodynamic chang-
es, such as changes in heart rate and mean arterial 
pressure, to those that occur during the gradually 
increasing acceleration of the shuttle returning to 
Earth.

In the study [76], an LBNP chamber (Fig. 5) was 
developed in which negative pressure can be ap-
plied to a subject in an upright and an upright 
seated position. The authors concluded that the 
chamber can be used to assess the tolerance of 
individuals who may be exposed to high +Gz ac-
celeration.

Fig.  3.  LBNP device for +Gz simulation [44].

Another LBNP simulator, which is quite similar 
in design to the device used in the study by Lat-
egola and Trent [44], is shown in Fig. 4. This device 
was used in the study [65] to compare hemody-
namic changes in subjects exposed to LBNP in an 
upright seated position, with the change to the 
supine position. The results of this study were 

Fig. 4 .  LBNP to study hemodynamic changes in an upright seated and supine positions [65].

Fig. 5 .  LBNP chamber for testing tolerance to simulated +Gz [76].
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lator will feature a replica of a simplifi ed fast-jet 
aircraft cabin and an aircraft ejection seat inte-
grated with the LBNP chamber. This technology 
is designed to allow blood fl ow to be controlled 
during a test while a person is in a seated posi-
tion, i.e. the position occupied by a pilot in a seat 
while fl ying an aircraft. The LBNP chamber creates 
a negative pressure that causes blood to pool in 
the lower parts of the body, similar to what hap-
pens when accelerations are applied along the 
longitudinal axis of the pilot’s body from head to 
leg (+Gz force). The change in negative pressure, 
and therefore the amount of blood accumulated 
in the lower parts of the body, is synchronized 
with the change in Gz force during the simulated 
fl ight. The consequences of blood shift to the low-
er extremities as a result of LBNP and the eff ects of 
acceleration in real conditions will be monitored 
using carotid artery blood fl ow recorders and cer-
ebral oxygenation and blood supply.

LBNP provides a controlled and reproduc-
ible method for inducing physiological responses 
similar to those observed during exposure to +Gz. 
Therefore, the use of LBNP for simulating +Gz stress 
may be a useful in training pilots to adapt to the 
physical challenges associated with the fl ight with 
sustained G-forces. Understanding how the cardio-
vascular system responds to simulated +Gz stress 
and how this stress factor aff ects cognitive per-
formance may contribute to the development of 
interventions and coping strategies for individuals 
who experience similar physiological challenges, 
such as fi ghter pilots. Finally, compared to a human 
centrifuge, which is capable of producing high sus-
tained +Gz acceleration, the use of LBNP to study 
cardiovascular responses has several important ad-
vantages. Some of them include [9,10,25]:
– possibility of using measurement techniques 

that are sensitive to movement or require a su-
pine or seated position,

– ability to maintain central hypovolemia in the 
supine or sitting position, minimizing the im-
pact of skeletal muscle activity,

– there are no stimulation of the vestibular or-
gan by rotation and no cross-coupled stimu-
lation of angular acceleration (Coriolis), which 
aff ects autonomic responses related to blood 
pressure regulation,

– enables quick interruption and termination of 
the test, as well as easy dosing of stimuli and 
rapid restoration of atmospheric pressure in 
the chamber.

Therefore, the use of LBNP to assess +Gz toler-
ance still appears to be an interesting alternative 
to human centrifuge studies.

Studies that have attempted to establish a link 
between the response to LBNP and +Gz accelera-
tion have often overlooked the moderating ef-
fects of negative pressure and +Gz onset rate. 
 Ludwig et al. [52] conducted research comparing 
relaxation acceleration tolerance in a human cen-
trifuge using three diff erent +Gz onset rates and 
an LBNP chamber. Fig. 6 shows a scheme of the 
LBNP chamber.

Fig. 6 .  Chamber LBNP to study the relationship 
between human response to lower body 
negative pressure and +Gz acceleration [52].

The results of the above studies showed that 
LBNP is eff ective in simulating the cardiovascular 
strain experienced by pilots during exposure to in-
creased gravitational forces (+Gz) in fl ight. By cre-
ating a negative pressure environment around the 
lower body, LBNP helps researchers study and de-
velop countermeasures against the physiological 
eff ects of high G-forces. These eff ects can include 
cardiovascular deconditioning and orthostatic in-
tolerance.

Recently, attempts are also being made to 
combine LBNP technology with a fl ight simulator. 
One example is the project aimed to build a sys-
tem that could be a useful tool for assessing pilot 
performance (acceleration stress tolerance) as an 
alternative to expensive centrifuge-based simu-
lators (project funded by the National Centre for 
Research and Development, Poland under Grant 
No.  DOB-BIO-12-05-001-2022). The fl ight simu-
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In conclusion, the use of LBNP to simulate car-
diovascular strain, typically induced by positive 
G forces (+Gz) in fi ghter jet fl ight, has played an 
important role in our understanding of the car-
diovascular response to gravitational forces. This 
knowledge not only benefi ts pilots, but also has 
wider implications for healthcare and working 
conditions where individuals may face similar 
physiological challenges.

CONCLUSIONS

In this paper we have provided a general over-
view of the development and applications of 
LBNP technology in diff erent fi elds. Details about 
the methods used to investigate the relationship 
between LBNP and +Gz acceleration are provided. 
Although the development of LBNP applications 
to simulate the cardiovascular load induced by ac-
celerations greater than +1 Gz has not been identi-
fi ed over the last two decades, further research in 
this area cannot be excluded.
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