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Abstract: 
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The aim of the following scientifi c paper is to address the ophthalmic issues and threats 
associated with human exposure to microgravity environments and radiation during 
space fl ights. We conducted a review of ophthalmic scientifi c literature related to space 
fl ights, focusing primarily on spacefl ight-related neuro-ocular syndrome (SANS). NASA 
(National Aeronautics and Space Administration) considers SANS, along with other 
vision disorders, to be one of the major medical challenges that can signifi cantly limit 
human ability for prolonged stays in space and on celestial bodies other than Earth [32]. 
In this paper, we also present the latest methods for diagnosing and preventing SANS.
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INTRODUCTION

The return of humans to the Moon raises many 
questions within the scientifi c community re-
garding their future in space. Unlike the previous 
space race, this time plans are being considered 
for a permanent stay on the Moon. This involves 
greater challenges in many areas—among others, 
in medicine. There are undoubtedly many medical 
risks associated with human presence in an envi-
ronment with diff erent gravity than on Earth and 
cosmic radiation. It is estimated that the human 
body ages about 10 times faster in space than on 
Earth [1]. 

Given the potential popularization of both pro-
fessional and tourist space fl ights in the coming 
decades, it is essential to familiarize the medical 
community with the most common complications 
of these fl ights. This review work has been cre-
ated to update and disseminate knowledge about 
ophthalmic diseases related to human presence 
in space. Special attention is given to the latest 
methods of diagnosing and preventing space-
fl ight-related neuro-ocular syndrome (SANS). Ad-
ditionally, we present the latest scientifi c theories 
regarding the pathophysiology of SANS.

METHODS

To fi nd scientifi c papers addressing the impact 
of human presence in space on the visual system, 
the Google Scholar and PubMed search engines 
were used. Research papers on the topic were 
found. It was verifi ed whether the scientifi c papers 
were published in journals meeting the standard 
of rigorous peer review. The focus of the subse-
quent work was on spacefl ight-related neuro-oc-
ular syndrome (SANS). Selected articles were then 
analyzed, assessing their content for signifi cant in-
formation, and a synthesis of the available knowl-
edge was conducted in the following review. 

RESULTS

The following review presents a summary of 
the analysis of selected articles, whose content 
reliably represents the most important (in the au-
thors’ opinion) and the latest reports on ophthal-
mic diseases occurring in astronauts.

SANS (spacefl ight related neuro-ocular 
syndrome) – symptoms

The fi rst reports on visual disturbances result-
ing from space fl ights can be traced back to the 
Gemini V and Gemini VII missions. In 2011, Mad-
er et al. [14] systematized the knowledge on eye 

function disorders resulting from prolonged stays 
of astronauts in space. They conducted eye ex-
aminations on 7 astronauts before and after their 
missions on the International Space Station (ISS). It 
was at that time that the term VIIP (visual impair-
ment and intracranial pressure syndrome) was 
fi rst introduced, which was later renamed SANS 
(spacefl ight related neuro-ocular syndrome) due 
to updates in the knowledge about the patho-
physiology of this syndrome. Astronauts suff er-
ing from SANS report vision disturbances, which 
are usually the only symptom. The most common 
fi ndings in ophthalmic examinations of SANS in-
clude: fl attening of the eyeball [9], typically mani-
festing as refractive changes towards hyperopia 
(23-48%) [10,25], optic nerve swelling character-
ized by a swollen disc and nerve sheath distension 
[16], choroidal congestion with visible folds (60%) 
[1,17], retinal ischemia presenting as soft exudates 
[11], and retinal folds [11]. There is also an observed 
increase in intraocular pressure, which resolves a 
few days after returning to Earth’s gravity [1]. SANS 
occurs in both sexes. Otto diagnosed SANS in as 
many as 43% of astronauts (n=36) [23]. NASA, on 
the other hand, reports the presence of SANS in 
66% of astronauts, indicating the widespread and 
serious nature of the issue [22]. Mader et al. [14] 
categorized the risk of developing SANS based 
on the duration of stay in a microgravity environ-
ment. For stays of 3 to 4 months, the risk was 23%. 
For stays exceeding 6 months, the risk was 48%. 
Symptoms of SANS can appear even after 2 weeks 
in space and persist for years after returning to 
Earth [14,15] Additionally, there is evidence that 
the symptoms of SANS worsen with each subse-
quent stay in a microgravity environment [15]. 

SANS – Pathophysiology and 
Diff erentiation

The exact pathophysiological mechanism re-
sponsible for SANS is not yet known. The leading 
theory involves microgravity-induced fl uid redis-
tribution in the human body. An indicator of this 
redistribution towards the head is the enlarge-
ment of the cross-sectional area of the jugular vein 
(by 30–40%). Jugular vein stasis has been docu-
mented both during simulated and actual fl ights 
[2,5]. Jugular vein stasis leads to cerebral venous 
congestion. Enlargement of the dural venous si-
nuses is a characteristic feature of all astronauts 
suff ering from SANS [29]. Subsequently, cerebral 
venous congestion is further exacerbated due 
to the shifting of the brain hemispheres towards 
the cranial vault and the enlargement of the brain 
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traocular pressure (IOP)), resulting from increased 
ICP, may further promote paravascular CSF fl ow 
into the eye, while inhibiting the posterior para-
vascular fl uid outfl ow from the eye [37]. Table 1 
shows the key diff erences between SANS and IIH.

Reilly et al. [27] suggest another element of the 
pathomechanism that may lead to SANS. They 
argue that the primary cause of SANS in astro-
nauts is orbital fat edema, which arises from the 
non-physiological distribution of body fl uids in 
a microgravity environment. This edema leads 
to compression of blood vessels, lymphatics, the 
optic nerve, and the eyeball, resulting in the char-
acteristic SANS features: eyeball fl attening, optic 
nerve swelling, choroidal congestion, and retinal 
ischemia [27]. Additionally, the computer model 
used by the authors showed slight exophthalmos, 
which has not been reported in patients with 
SANS. According to the authors, it may have been 
easily overlooked during a physical examination 
[27]. They do not entirely rule out the role of el-
evated ICP, which they believe may synergistically 
contribute to the occurrence of SANS.

Furthermore, ICP measured in six ISS crew 
members, according to Lee et al. [12], was too low 
to solely explain the visible symptoms of SANS. 
This may support another local mechanism sug-
gested by Zwart et al. [39]. They claim that SANS is 
partly caused by genetic predispositions to one-
carbon pathway dysfunctions, resulting in local 
vitamin B defi ciencies and oxidative stress lead-
ing to endothelial dysfunction [39]. Malfunction-
ing endothelium leads to blocked CSF drainage, 
causing local compartmentalization and elevated 
ICP, leading to SANS. Additionally, they highlight 
the possible role of elevated CO2 levels in the air, 
high-sodium diets, cosmic radiation, and non-
physiological cellular responses to testosterone 
and insulin. Their hypothesis that local processes 
cause SANS is supported by reports of CSF com-

ventricles [1]. Since the absorption of cerebrospi-
nal fl uid (CSF) depends on the pressure gradient 
between the cerebrospinal and venous compart-
ments, cerebral venous congestion reduces CSF 
fl ow, thereby increasing intracranial pressure 
(ICP). SANS should not be considered a variant 
of idiopathic intracranial hypertension (IIH). First, 
SANS does not present with the headaches, tin-
nitus, or double vision characteristic of IIH [10]. 
Secondly, in SANS, choroidal folds are much more 
frequent than in IIH (60% compared to 1-10%), and 
changes in refraction are also more common [1]. 
Thirdly, the soft exudates—“cotton wool spots”—
visible on the retina in SANS, do not occur in IIH 
[10].  Fourthly, the optic disc swelling in IIH is usu-
ally bilateral and symmetrical (90-97%) [11]. Fifthly, 
the subarachnoid space (SAS) of the optic nerve 
is more expanded in SANS than in IIH, and the 
eyeball is more fl attened [10]. While the optic disc 
swelling in IIH may primarily result from increased 
ICP, in SANS, increased ICP and changes in the CSF 
outfl ow pathways within the optic nerve likely in-
teract to cause optic disc swelling [10]. Anatomi-
cally, the SAS of the optic nerve becomes a cul-de-
sac at the back of the eye. Due to the micrograv-
ity-induced displacement of CSF volume towards 
the head, it is unlikely that the CSF already in the 
orbital space can reverse its fl ow direction from 
the optic nerve SAS towards the intracranial SAS. 
Additionally, the microgravity-induced fl uid shift 
towards the head may disrupt the function of the 
optic nerve’s orbital lymphatic drainage systems, 
potentially resulting in lymphatic stasis [14]. Both 
factors can impede CSF outfl ow from the optic 
nerve SAS. An alternative outfl ow pathway could 
be the expulsion of CSF from the optic nerve SAS 
into the paravascular glymphatic pathway within 
the optic nerve [21,38]. In astronauts, the decrease 
or inversion of the typical transluminal pressure 
gradient (calculated by subtracting ICP from in-

Similarities and diff erences IIH SANS

Optic disc swelling Yes Yes

Symptoms Chronic headaches (94%); Transient visual disturbance (68%); 
Pulsatile noise in the ears

Usually no symptoms other than complaints concerning vision

Is there bilateral swelling? Approx. 96% bilateral Diff erential image, usually right-sided 

Intracranial pressure (ICP) Increased Some elevated intracranial pressure in post-fl ight LP, but no 
convincing evidence that increased ICP is the main etiology

Body structure Obesity in more than 90% From standard to athletic

Radiological results Distinct fl uid shift forward in the subarachnoid space, optic 
nerve sheath, eyeball fl attening, empty sella, venous sinus 
narrowing without thrombosis

Increased fl uid in the orbital subarachnoid space and optic 
nerve sheath, eyeball fl attening, brain shift towards the cranial 
vault, limited evidence of venous sinus abnormalities

Features of the retina Anterior displacement of Bruch’s membrane opening. 5:1; 
Retinal folds appear fi rst

Posterior displacement of Bruch’s membrane opening. 1:5; 
Choroidal folds appear fi rst

Fold pattern Typically concentric around the optic nerve head Typically linear

Tab. 1.  Comparison of Spacefl ight-Related Neuro-Ocular Syndrome (SANS) to Idiopathic Intracranial Hypertension (IIH) 
based on Lee et al. [2].
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patterns following prolonged exposure to mi-
crogravity. The higher the index, the greater the 
likelihood of microvascular damage and SANS oc-
currence [33]. Despite this, fundus photography is 
less eff ective in diagnosing optic disc swelling and 
does not detect other SANS symptoms [11]. 

Among the remaining methods, MRI is highly 
sensitive to eyeball fl attening. Although MRI has 
high sensitivity to eyeball fl attening, it has very 
low sensitivity for detecting optic disc swelling 
[11]. Ultrasonography (USG) has high sensitivity 
for assessing the length of the eyeball and thus 
for evaluating refractive errors [11]. However, USG 
is not eff ective in diagnosing other SANS symp-
toms. Visual fi eld testing may indirectly indicate 
the presence of optic disc swelling but does not 
provide direct diagnostic information [11].

Waisberg et al. [35] suggest expanding diag-
nostic methods to include Dynamic Visual Acuity 
(DVA) and Contrast Sensitivity (CS). DVA is the abil-
ity to see moving objects, which is crucial in the 
spacefl ight environment. It has been shown that 
24 hours after returning from a prolonged space 
mission, astronauts had signifi cantly reduced DVA 
[35]. Current research focuses on assessing DVA us-
ing head-mounted devices to evaluate astronauts’ 
visual quality [35]. It has also been shown that dis-
turbances in CS in the peripheral visual fi eld with-
out aff ecting the central part of the visual fi eld are 
signifi cantly more common in patients with IIH 
and may be helpful in diff erentiating SANS [35]. 

Eff ective prevention requires an understanding 
of the pathomechanism. For SANS, based on avail-
able knowledge, pharmacological prophylaxis is 
suggested to modulate the one-carbon pathway 
[18,19,24,29,31], mechanical prophylaxis using 
suits that create negative pressure in the lower 
part of the body [20,26,36], and swim goggles to 
improve the translaminar pressure gradient (the 
diff erence between ICP and IOP) [11]. Preliminary 
fi ndings from NASA’s simulation studies indicate 
that the use of pressure cuff s on the thighs of 
participants during sleep in the -6° head-down 
position does not eff ectively prevent SANS [28]. 
Additionally, passive head elevation in astronauts’ 
“beds” is likely an eff ective method for preventing 
SANS, though further research is needed [30]. 

Other Ocular Disorders Induced by 
Spacefl ight

Dry Eye Syndrome (DES) is observed in 30% of 
the ISS crew [3]. The previously mentioned shift of 
body fl uids toward the head and the resulting in-
creased intraocular pressure (IOP) and intracranial 
pressure (ICP) aff ect the shape and volume of the 

partmentalization in the SAS of the intraorbital 
part of the optic nerve [6–8,11]. This would explain 
the possibility of SANS occurring even in individu-
als with ICP within the normal range and the ab-
sence of symptoms characteristic of IIH. Diff erenc-
es in the degree of optic disc swelling between the 
eyes of the same person could then be explained 
by the diff erent spatial structures of the SAS, lead-
ing to greater or lesser patency of the SAS. In sum-
mary, the pathophysiology of SANS is undoubt-
edly complex, and further research is necessary to 
determine the specifi c cause. It is highly unlikely 
that elevated ICP is the sole etiological factor.

SANS – Diagnosis and Prevention
To diagnose SANS, the following methods are 

used: magnetic resonance imaging (MRI) of the 
skull, orbital ultrasonography (USG), optical co-
herence tomography (OCT) of the fundus, fundus 
photography, visual fi eld testing, and refraction 
testing [10,11,13]. Attempts to correlate CSF pres-
sure measured by lumbar puncture with SANS 
symptoms have produced inconclusive results 
[11]. It is possible to develop SANS without sig-
nifi cant elevation of ICP. Furthermore, Wåhlin et 
al. [34] demonstrated that the average length of 
the optic nerve increased by 0.80 mm (P< 0.001) 
in astronauts. This is primarily due to the displace-
ment of the optic nerve head and is signifi cantly 
associated with mission length, pre-fl ight body 
mass, and severity of SANS symptoms. Currently, 
there is no gold standard for diagnosis, and each 
method has its own advantages and limitations. It 
is important to note that diagnostic methods on 
the ISS are constrained compared to Earth condi-
tions due to limited storage space on the station 
and the maximum allowable weight for individual 
shipments to the ISS. Currently available diag-
nostic methods for SANS on the ISS include: OCT, 
Amsler grid, refraction testing, and subjective vis-
ual quality surveys [11,35].

OCT is very eff ective in detecting optic disc 
swelling, thickening of the optic nerve fi bers, and 
choroidal and retinal folds. However, it is not eff ec-
tive in detecting refractive changes. Until recently, 
it was not available on the ISS. It is now one of the 
primary diagnostic tools for SANS [11]. 

Fundus photography is moderately eff ective in 
detecting choroidal and retinal folds and is very 
eff ective and specifi c in detecting retinal ischemia 
and visible cotton wool spots or hard exudates 
[11]. Vyas et al. [33] developed the “Subclinical Vas-
cular Pathology Index,” a biomarker that assesses 
potential subclinical microvascular damage and 
risk of SANS based on changes in retinal vascular 
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observation period called “Lifetime Surveillance 
of Astronaut Health” (LSAH). The authors esti-
mated an average induction period of 5–10 years 
post-spacefl ight and identifi ed a cumulative ef-
fect of repeated space missions. In a 5-year NASA 
study on cataract in astronauts (NASCA), it was 
found that the incidence of cortical cataract was 
signifi cantly higher among exposed astronauts 
[4]. The authors identifi ed a dose-dependent re-
lationship between exposure to galactic cosmic 
rays and posterior subcapsular opacities, but no 
correlation was found between cosmic radiation 
and nuclear cataract. The risk of cataract develop-
ment is higher with exposure to high doses of ra-
diation (over 8 mSv), and the incidence increases 
among astronauts who participated in lunar mis-
sions [4]. 

CONCLUSION

SANS is undoubtedly the most severe and 
prevalent ocular condition associated with space-
fl ight. Adequate prevention and treatment will be 
essential for long-term human presence in space 
and on the Moon. Further research and techno-
logical solutions to this medical issue are an inte-
gral part of the future of space exploration. Other 
conditions, such as cataracts or dry eye syndrome, 
do not pose as signifi cant a challenge due to es-
tablished treatment or prevention methods. How-
ever, more eff ective solutions are undoubtedly 
needed for both symptomatic and causal treat-
ment of dry eye syndrome in space.

tear fi lm, blinking frequency, tear drainage, and 
the condition of the eye surface. The atmosphere 
inside the ISS also increases the risk of tear fi lm 
evaporation and surface eye infl ammation. This 
increased risk is due to the strong airfl ow from 
continuous ventilation, relatively low air humid-
ity at 60%, and elevated CO2 levels in the air [3]. 
Additionally, astronauts work extensively in front 
of screens and are exposed to artifi cial lighting 
throughout the day. Diagnosing tear fi lm disor-
ders in space is challenging due to the complexity, 
invisibility, and small volume of the tear fi lm. Lim-
ited diagnostic and therapeutic tools are available 
on the ISS. Potential treatment options in space 
include neurostimulation, blinking exercises, 
heating, Meibomian gland massage, and clean-
ing around the eyes. Moisturizing drops are not 
suitable for treating dry eye syndrome in space 
for several reasons. They are diffi  cult to use in mi-
crogravity because they cannot be “dropped” into 
the eye but must be “sucked” in using surface ten-
sion forces. This can potentially contaminate the 
bottle with microorganisms from the eye surface 
and surrounding tissues. They also occupy consid-
erable space and have a limited shelf life, which 
is impractical for long-duration space missions [3].

Cortical Cataract is another spacefl ight-induced 
ocular disorder [4]. Cosmic radiation, which astro-
nauts are exposed to during long-duration space 
missions, is considered one of the main causes of 
cataract formation in space. Cucinotta et al. [4] re-
ported that cataract occurs in 13.6% of crew mem-
bers who participated in a study with a 30-year 
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